
CS667 Lecture Notes: Scattering

Steve Marschner
Cornell University

3 September 2015

These notes are about how we describe optical scattering at surfaces and in
volumes, radiometrically.

We’ve discussed how light travels through empty space. Today we look
at how it interacts with stuff in the scene—after all, if the light just travels
unimpeded the pictures will be pretty uninteresting.

1 Scattering

Scattering is when light coming from one direction ends up going into a range
of directions. Specular reflection from smooth metal and glass surfaces is not
scattering; it’s reflection or refraction. I use the term “ideal specular” when I
want to be clear I’m talking about this kind of one-direction-in, one-direction-
out phenomenon.

There are three kinds of descriptions of scattering that are widely used in
graphics:

• BSDF, Bidirectional Scattering Distribution Function: describes scatter-
ing at infinitesimally thin surfaces (either the surface of a thick object or a
thin object like a window or a sheet of paper). BSDF describes scattering
both back to the same side (reflection, BRDF) and through to the other
side (transmission, BTDF). This is a function of a point (on a surface)
and two directions (incoming and outgoing, or incident and exitant).

• BSSRDF, Bidirectional Scattering-surface Reflectance Distribution Func-
tion: describes reflection from a thick object including light that scatters
inside the material, not just what scatters at the surface. This means
light can go in at one place and come out somewhere else, unlike with the
BSDF. This is a function of two points (incoming and outgoing) as well
as two directions.
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• Phase function: describes scattering that takes place over a 3D volume,
not concentrated at a 2D surface. This is a function of a point (in space)
and two directions.

In these notes I’ll mostly be concerned with giving precise definitions of these
quantities. In lecture I will discuss BSSRDF and the phase function when we
encounter them later in the course.

2 BRDF

Think of a surface, with light incident on it at a particular point. Let’s consider
just the light arriving from an infinitesimal solid angle dωi around the incoming
direction ωi. If the radiance in this solid angle is Li, then the (infinitesimal)
irradiance on the surface is dEi(ωi) = Liµ(dωi). (Remember that the projected
solid angle measure µ has a factor of n · ωi built into it, so that it assigns a
smaller measure to more grazing solid angles.)

If this is a scattering surface (one that sends light to a range of directions,
not just a single direction as a mirror would), this produces a distribution of in-
finitesimal reflected radiance dLr(ωr) over the hemisphere of outgoing directions
ωr.

The BRDF is the ratio of the reflected radiance to the incident irradiance:

fs(ωi, ωr) =
dLr(ωr)

dEi(ωi)
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Now, if we want to get the (finite) radiance resulting from illumination from
some distribution Li(ωi) we can just add up the contributions of illumination
from differential solid angles all over the hemisphere—that is, we integrate:

Lr(ωr) =

∫
H2

fr(ωi, ωr)Li(ωi)dµ(ωi)

Operational version. If you like a concrete operational definition of this as a
derivative, think of the experiment of illuminating the surface with a small area
light source of radiance Li (maybe a frosted light bulb with a dimmer to control
Li and an adjustable iris in front of it to control the solid angle Ωi it illuminates)
and measuring the reflected radiance Lr with a camera. The reflected radiance
will be directly proportional to both the radiance of the source and, in the
limit for small solid angles, the size of the solid angle. The BRDF is just the
constant of proportionality between Lr and Liµ(Ωi)—it is the derivative of Lr

with respect to Ei.

Mathematical version. If you like a more mathematical definition, you can
think of light reflection as an operation on light distributions. You hand an
incident radiance distribution Li : H2 → IR to the BRDF and it hands back
a reflected distribution Lr : H2 → IR. Because of the superposition principle,
this is a linear operator R on functions over the hemisphere:

Under reasonable conditions on the operator and the functions, this type of
operator can always be expressed as an integral: the output is an integral of the
input multiplied by a kernel function.

R : (H2 → IR)→ (H2 → IR)

: Li 7→
∫
H2

fr(ωi, ·)Li(ωi)dµ(ωi)

We call this kernel function the BRDF.

2.1 BRDFs as densities

The BRDF is a function of four variables, which makes it a bit hard to think
about sometimes. If we think of it in terms of one argument at a time, that can
help.

For light arriving from ωi, the BRDF fr(ωi, ·) is the density of reflectance
over the outgoing hemisphere. Reflectance is a ratio of that tells the fraction
of total irradiance reflected, and the BRDF describes the distribution of this
reflectance over the hemisphere by giving the density function.
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If we fix the outgoing direction instead, the function fr(·, ωr) is another kind
of density. It describes the distribution of something we might call “sensitivity”
over the incoming hemisphere. By this I mean: the radiance in direction ωr

depends on light coming from many directions, and fr(ωi, ωr) tells you how
sensitive it is to light from the particular direction ωi.

2.2 Units of BRDF

One question that always comes up is, What does that mean, that the BRDF
has units of inverse steradians? Why can’t it just be unitless, since it relates
radiance out to radiance in? I have three answers to this question.

First answer: I observed above that the BRDF is a density function that
measures the density of reflectance (dimensionless ratio) over the hemisphere
(measured in terms of solid angle). This is a density just like population den-
sity (people per square kilometer) or mass density in a solid (grams per cubic
centimeter), so it has units of “reflectance per unit solid angle.” But since re-
flectance is dimensionless we state this unit as just “per unit solid angle” or
“one over steradians” (1/sr) or “inverse steradians” (sr−1).

2.3 Properties of the BRDF

Not every function of two directions makes for a good BRDF. There are two
properties all BRDFs have, physically: reflection conserves energy, and they
obey Helmholtz reciprocity.

Energy conservation The basic requirement of energy conservation is that
when a surface is illuminated with total irradiance Ei then the reflected radiant
exitance Mr is less than Ei. This has to be true for all distributions of irradiance,
so it has to be true of irradiance coming from a small solid angle Ωi in the
direction ωi. If we integrate all the outgoing light for this case we have the
radiant exitance:

Lr(ωr) = fr(ωr, ωi)Li(ωi)µ(Ωi) = fr(ωr, ωi)Ei

Mr =

∫
H2

Lr(ωr) dµ(ωr)

=

∫
H2

fr(ωr, ωi) dµ(ωr)

= Ei

∫
H2

fr(ωr, ωi) dµ(ωr).

So radiant exitance is less than incident irradiance exactly when∫
H2

fr(ωr, ωi) dµ(ωr) < 1.
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Here is a less hand-wavey proof that this guarantees energy conservation for
arbitrary incident distributions:

Lr(ωr) =

∫
H2

fr(ωr, ωi)Li(ωi) dµ(ωi)

Mr =

∫
H2

Lr(ωr) dµ(ωr)

=

∫
H2

∫
H2

fr(ωr, ωi)Li(ωi) dµ(ωi) dµ(ωr)

=

∫
H2

Li(ωi)

[∫
H2

fr(ωr, ωi) dµ(ωr)

]
dµ(ωi)

<

∫
H2

Li(ωi) dµ(ωi) = Ei

Reciprocity This is part of a larger principle of reversibility of light transport
paths, about which we’ll hear more later in the course. In the context of the
BRDF, the implication is that BRDFs are invariant with respect to swapping
their arguments. That is:

fr(ω1, ω2) = fr(ω2, ω1).

A physical interpretation is that the sensitivity distribution with the observer
at a given position is the same as the reflected light distribution with the source
at the same position.

This principle is true in reality (making it a great sanity-checking tool for
measurements) and it is also a fundamental assumption of many advanced ren-
dering algorithms. For this reason we try to ensure the BRDF models we invent
are always reciprocal.

2.4 BTDF and BSDF

I have so far only talked in detail about the BRDF, but this is only half of
the function—the BSDF—that I promised to talk about. The other half is the
BTDF, and there is really nothing new at all: its definition is identical to the
BRDF, but without the constraint that the two vectors are on the same side of
the surface. The BTDF is radiance over irradiance, just like the BRDF.

5



Nomenclature note: The R stands for “reflectance”; the T stands for “trans-
mittance.” The “-ance” means “per unit input.” I’m not sure why we don’t
tend to use the word “scatterance” for the BSDF, which is used in some other
fields; we tend to let the S stand for “scattering.”

3 BSSRDF

The BSDF is for reflection from a surface—a perfectly thin surface—which has
to happen at a single point. This is good for very thin sheets of material (a
piece of paper) or for materials with a well-defined interface (metals, which are
very opaque, or pure dielectrics, which are perfectly clear inside so that light
only interacts at the surface). But not all materials are like this; many are thick
and allow light to penetrate into the surface, then emerge some distance from
the incident point. Some examples are marble (a crystalline material with lots
of imperfections that scatter light), skin (a complex material with all kinds of
microscopic structures), and milk (water with many protein molecules and fat
droplets).

If we’d like to model these materials without actually including this subsur-
face light scattering in the rendering calculation, we need a reflectance distri-
bution that accounts for scattering across the surface as well as scattering to
different directions. This is the purpose of the Bidirectional scattering-surface
reflectance distribution function or BSSRDF.

The BRDF can be considered a function of a point (the reflection point on
the surface) and two directions (in and out directions). The difference between
that and the BSSRDF is simply that the BSSRDF separates the single point into
an incident point xi and an exitant point xr. So the BSSRDF is a function,
not just of a point and two directions (6 variables), but two points and two
directions (8 variables).
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As a result the incoming light needs to be integrated over the area of the
surface:

Lr(xr, ωr) =

∫
S

∫
H2

S(xi, ωi,xr, ωr)Li(xi, ωi) dµ(ωi) dA(xi).

From this equation we can see that S has to have units of 1
m2sr , and we can

interpret it as the derivative

S =
dLr(xr, ωr)

dΦi(xi, ωi)

For a concrete interpretation of this derivative we can look at this experiment:
Illuminate an area of surface Si from solid angle Ωi. This will result in some
radiance being observed at a point xr in the direction ωr. Larger incident areas
and solid angles will produce more radiance out for the same radiance in. The
constant of proportionality between the radiance ratio Lr/Li and the product
A(Si)µ(Ωi) is the BSSRDF.

The BSSDRF has the same kind of reciprocity and energy conservation prop-
erties as the BRDF:

S(xi, ωi,xr, ωr) = S(xr, ωr,xi, ωi)∫
S

∫
H2

S(xi, ωi,xr, ωr) dµ(ωr) dA(xr) < 1

4 Phase Function

Scattering can also happen in space, not at any particular surface. In this case
scattering is distributed over a 3D volume, not just over a 2D surface.

Just like with the BRDF, we think of single scattering happening at a point.
With the BRDF we had to integrate over solid angle to produce some reflected
light; in the volume case we need to integrate over distance as well (to account
for the difference between 2D and 3D). Scattering that contributes to radiance
along a ray is distributed along the ray, rather than all happening at a single
point where the ray intersects the reflecting surface. For this reason we need to
look at a differential bit of ray in order to find the right description for volume
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scattering, and to get finite radiance we need to integrate along the ray and over
the incident sphere (not hemisphere, since there is no surface) with respect to
solid angle (not projected solid angle, since there is not surface, and therefore
no surface normal).

dLr(x, ωr) = f̃p(ωi, ωr) dµ(ωi) ds

Lr(x, ωr) =

∫ ∞
0

∫
S2

f̃p(x(s), ωi, ωr)Li(x(s), ωi dσ(ωi) ds

I’ll call f̃p the “unnormalized phase function.”

From the integral we can see f̃p has units of 1
srm .

Unlike in surface reflection, it is customary to normalize phase functions.
This means we scale the phase function so that its integral over the sphere is 1,
and the resulting factored-out constant is called the scattering coefficient, σs.
One reason this is done is that it’s common for the (normalized) phase function
to stay the same across space while the scattering coefficient changes.

f̃p(x, ωi, ωr) = σs(x) fp(ωi, ωr)

I’ll call fp just the “phase function;” it has units of inverse steradians (1/sr).
The scattering coefficient has units of inverse distance (1/m).

In many cases fp is a property of the “stuff” that is floating around in the
volume (smoke particles, water droplets, etc.) and σs is determined by how
much of the stuff there is per unit volume.
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