
Efficient Rendering of Human Skin
CS6630

Sunling Yang Tim Langlois

Cornell University

April 5, 2012



Outline

Theory

Sum of Gaussians Approximation

Hardware

Texture Space Diffusion

Translucent Shadow Maps (TSMs)



Assumptions/Approximations

1. Flat surface approximation

2. Ignore single scattering

3. Use 4-8 Gaussians to approximate the diffusion profile at
each pixel point (original R(r) is not a separable kernel but
the approximation is)

4. Use texture space diffusion to approximate highly diffuse
local scattering

5. Extend translucent shadow maps to approximate global
scattering for highly curved texture space and close
Euclidean space (e.g., ear)



Diffusion Profiles

From left to right: Albedo (1st) and irradiance (2nd) combine
to give subsurface irradiance which is then convolved with each
Gaussian basis profile (3rd through 7th) and combined in a final
render pass with specular (8th) to produce the final image
(9th). Convolutions are performed in off-screen 2D textures but
shown here mapped onto the face.



Theory - extending from Jensen et al. 2001
• Single layer dipole approximation extended to develop

multipole approximation for multiple thin layers
• Multiple bounces (reflection and transmission) across the

different layers
• Accounting for rough surfaces
• This can be used to render the appearance of paint, paper,

and human skin



Extending from Dipole to Multipole

α′ =
σ′s
σ′t

,

r = ‖x0 − xi‖2,

σtr =
√

3σaσ
′
t,

D= 1
3σ′t

,

A =
1+Fdr
1−Fdr

,

Fdr = Fresnel diffuse
reflectivity

• Dipole case: diffuse reflectance profile =

R(r) = α′zr(1+σtrdr)e−σtrdr

4πd3
r

− α′zv(1+σtrdv)e−σtrdv

4πd3
v

• Equation to solve : φ(r)− 2AD δφ(r)
δr = 0 at z=0

• Multipole case (∞ approximated with 2n+1):

R(r) = Σn
i=−n

α′zr,i(1+σtrdr,i)e
−σtrdr,i

4πd3
r,i

−
α′zv,i(1+σtrdv,i)e

−σtrdv,i

4πd3
v,i

• T(r) = Σn
i=−n

α′zr,i(d−zr,i)(1+σtrdr,i)e−σtrdr,i
4πd3

r,i
−

α′zv,i(d−zv,i)(1+σtrdv,i)e−σtrdv,i
4πd3

v,i

• Equations to solve:
φ(r)− 2A(0)D δφ(r)

δr = 0 at z=0

φ(r)− 2A(d)D δφ(r)
δr = 0 at z=d

• Note that the locations of the multipoles are not
symmetric about the layers → they are scaled by
the refractive indices of the media



Light bouncing across different layers

• The transmission profile T and the reflectance profile R are
computed recursively across all the layers, T =
((T1 ∗ T2) ∗ T3) ∗ ..., where ∗ stands for convolution

• By taking T and R into frequency space using FFT, ∗
becomes multiplication and T from medium 1 to medium 2
= T+

12 = T+
1 T

+
2 + T+

1 R
+
2 R
−
1 T

+
2 + ... =

T+
1 T

+
2 (1 + (R+

2 R
−
1 ) + (R+

2 R
−
1 )2 + ...) =

T+
1 T

+
2

1−(R+
2 R
−
1 )

, where +

and − stand for forward-scattering and
backward-scattering, respectively (Donner and Jensen
2005). This is the Kubelka-Munk equation in frequency
space.



Accounting for Rough Surfaces

• Before there is transmission from medium 1 to medium 2,
random walk, and back to medium 1,
Sd(xi, ωi, xo, ωo) = 1

πFi(xi, ωi)R(‖xi − xo‖2)Fi(xo, ωo), Fi =
Fresnel transmittance

• Now, the Fresnel term is replaced with Cook-Torrance
BRDF term averaged by Monte Carlo sampling,
Sd(xi, ωi, xo, ωo) = 1

πρdt(xi, ωi)R(‖xi − xo‖2)ρdt(xo, ωo),
ρdt(x, ωo)− 1.0−

∫
2π fr(x, ωo, ωi)(ωi · n)dωi,

fr(x, ωo, ωi) = D(x,ωo,ωi)G(x,ωo,ωi)F (x,ωi,ωo)
4(ωi·n)(ωo·n)

• A = 1+ρd
1−ρd , ρd = average diffuse reflection factor computed

by Monte Carlo sampling



Diffusion profile = Gaussian convolution = Gaussian
blur

• δC
δt = D δ2C

δx2

• Taylor expansion : Ci+1 = Ci + δx δCδx + 1
2δx

2 δ2C
δx2 + O(δx3)

Ci−1 = Ci − δx δCδx + 1
2δx

2 δ2C
δx2 + O(δx3)

Ci+1 − Ci−1 = 2δx δCδx
δC
δx = C+i+1−Ci−1

2δx

Ci − Ci−1 = δx δCδx −
1
2δx

2 δ2C
δx2

(Ci+1 − Ci)− (Ci − Ci−1) = δx2 δ
2C
δx2

δ2C
δx2 = (Ci+1−Ci)−(Ci−Ci−1)

δx2

• δC
δt = D

δx2 ((Ci+1 − Ci)− (Ci − Ci−1))
• δC

δt = Ci,n+1 − Ci,n ≈ D
δx2 (Ci+1,n + Ci−1,n − 2Ci,n)

Ci,n+1 = (1− 2λ)Ci,n + λCi+1,n + λCi−1,n, λ = D
δx2



Hack 1 : approximating R+,−(r), T+,−(r) at each layer
with 4 Gaussians each

• Instead of FFT and multiplication in frequency space and
inverse FFT back, a minimization of∫∞
0 r(R(r)− Σk

i=1wiG(vi, r))
2dr is performed to find the

diffusion profile R(r) with parameters weights wi and
variance vi.

• R+ = Σk1
i=1wiG(νi, r) ∗ Σk2

j=1w
′
jG(ν ′j , r) =

Σk1
i=1Σ

k2
j=1wiw

′
jG(2νi, r)

all initial slab profiles are fitted to powers of a single
Gaussian of narrow variance

• Physical correctness requires infinite sum. In this case the
sum goes until n, where n is found by computation where
the Gaussian sum above converges towards the
Kubelka-Munk equations with error < epsilon
T+

1 T
+
2

1−(R+
2 R
−
1 )

- T+
1 T

+
2 (Σn

i=0(R
+
2 R
−
1 )i) < ε



Approximate diffusion profiles as a linear combination
of Gaussian basis functions = Why the Gaussian is the

ultimate awesome function

• Convolution with Gaussian kernels is faster than FFT and
inverse FFT

• 2D convolution can be split into two 1D convolutions

• Mean-free paths differ by frequency of spectral bands, so
each diffusion profile R(r) has 3 components R, G, and B.

• Associative law of convolution to solve diffusion solution of
many time steps as multiple time step convolutions

• The fact that G(A+B) = G(A) ∗G(B) means diffusion
across different layers =sum of different diffusion constants
inside Gaussians



Graphics Hardware

• Many cores, very fast
• Not as general as CPU

• Geometry → Processing →
Pixels → Processing

• Shaders
• Vertex
• Fragment (Pixel)



Texture space diffusion

• Performs irradiance convolution
1. Rasterize irradiance into a texture

• Vertex shader

2. Compute image filtering operations (convolutions) on that
texture

• Gaussian convolutions are blurs (fragment shader)
• This is super fast due to the separable Gaussian kernel

3. Texture map the result back onto the 3D mesh

• Assume single scattering is negligible



Texture space stretching

• When mapping to uv coordinates, texture distortion
(stretching) occurs

• Diffusion between two points on the surface should depend
on Euclidean distance

• Stretching needs to be accounted for during convolution

• Used to scale gaussian at each pixel (change weights of
each pixel)

• Vertex shader provides derivatives from uv mapping,
fragment shader computes stretch



Texture space stretching

Without stretching (left) and accounting for stretching (right)



Texture space stretching



Translucent Shadow Maps (TSMs)

• Texture space diffusion captures
local scattering, but not global
scattering through thin regions
(such as an ear)

• These regions are close in
Euclidean space but far in
texture space

• For each pixel C of the shadow
map, the TSM renders:

• (u,v) coordinates of light facing
surface

• Depth of light facing surface



Translucent Shadow Maps (TSMs)

• Estimate scattered light at C
• Convolution of irradiance at

each light-facing point by
profile R through the thickness
of object

• Faster to do this at point B

• High-frequency changes in depth
can cause artifacts

• Convolve with depth also (use
an average of depth)

• Global scattering term
interpolated to 0 as point
approaches light facing side



Translucent Shadow Maps (TSMs)

• A 3D convolution
• Irradiance at each light facing point (2D convolution) with

depth

• Gaussian kernels are separable

• TSMs can reuse the textures computed for local scattering
• Weighted sum of k texture lookups

• SCORE!



Translucent Ear

Previous texture-space diffusion techniques (left). Modification
to TSMs (center). Monte Carlo rendering (right).



Texturing

• Diffuse color map → infinitesimal, highly absorptive layer
• Absorbs light once as it enters, once as it leaves
• Two absorptions of

√
diffuseColor

• Gives final skin tone



Apply specular terms

• Specular shading using precomputed specular texture map
• Specular BRDF by Keleman and Szirmay-Kalos



Results

Donner 05 This Method



Performance



Results

Algorithm applied to color and normal maps captured from
actors.



Results

No
precomputation
required for
animated or
deforming models.



Limitations and Future Work

• Texture stretching inaccurate for extreme curvature, and
convolving across seams presents a problem

• TSMs
• Bias needed to prevent speckling
• Need one map per light (but environment lighting possible

by importance sampling a few point lights)
• Depth calculations are inaccurate for extreme curvature

• Have only shown low error fit of small number of Gaussians
• No formal proof that the fits can be made arbitrarily

accurate with more Gaussians

• Would like to support spatially varying/texture dependent
diffusion profiles

• Move R(r) calculation to fragment shader
• Would allow freckles, scars, makeup


	Theory
	Sum of Gaussians Approximation
	Hardware
	Texture Space Diffusion
	Translucent Shadow Maps (TSMs)

