
Ray Maps for Global Illumination

Paper by Vlastimil Havran et. al.

Presentation by

Teddy Ni and Ian Lenz

Overview

• Quick intro to photon
mapping

• What’s ray mapping?

• What does it solve?

• What do we need to
have?

• How do we do that?

Photon Mapping

2 pass rendering scheme:

• First: Trace photons from
light source
– Similar to MC path tracing

– Record location when photon
hits surface

• Second: Use photon hit
densities to estimate
indirect radiance

Density Estimation

Problems with Photon Mapping

• a: Proximity bias – finite number of
samples leads to blurring
– General problem w/density methods

• b: Boundary bias – underestimate
boundary illumination
– Overestimating effective SA

• c: Topological bias – underestimate
SA for curved surfaces
– Leads to overestimating illumination

Ray Mapping to the Rescue

• Proximity bias (a) will always be
present

• But, can solve (b) and (c) by
considering rays rather than
contacts

• So: record entire rays rather than
just photon contact points in first
pass

Basic Operations

• In practice, I.(a),
I.(b) most useful
– Check if ray hit the

right side of a disc

• II.(a) and II.(b) used
together for KNN

• Either II.(a) or II.(c)
used to estimate
density (usu. II.(a))

Implementation

Requirements

• Need to find rays in proximity to a point

• Minimize number of rays examined

• These are same goals as in photon mapping

Store Rays in K-d Tree

• Binary tree

• Each node corresponds to box in space

• Children correspond to smaller boxes,
split by a splitting plane ⊥ to an axis

• Each node (box) contains a list of all rays that
intersect it

K-d Tree Construction

• Root

• Subdivide node in direction of greatest length

– # of rays in node > constant

– diagonal of node is too large

– depth of node is less than constant

• Place splitting plane in middle of current node

Lazy Tree Construction

• When we use the K-d tree for lookup,
subdivide the leaf nodes we traverse
when necessary

• Splitting plane in middle of node is O(1) and
facilitates fast dynamic construction

• Empirically provides better performance than
more complicated splitting plane decisions

Ray Lookup

• k-nearest neighbors query about a point

• Independent of distance metric

1. Assign each node of the k-d tree a priority

2. Priority equals minimal distance between
queried point and node (box)

3. Examine nodes by increasing priority in a
priority queue

Ray Lookup

4. Keep a current list of k closest rays

5. At a leaf node, examine rays in node and
update our current list

6. Terminate when farthest ray in current list is
closer than priority of current node

• In practice, build priority queue dynamically

Extension: Directional Nodes

• Prune nodes (boxes) that do not contain rays
pointing in the correct direction

Extension: Query Coherence

• Consecutive queries may be around points
close to each other

• These queries will explore the same nodes

• Remember those nodes
If new query close enough to last query,
 pre-dump nodes into priority queue

Extension: Memory Cap

• Tag each node in k-d tree with time of last
access (i.e. last put onto priority queue)

• When subdividing, if k-d tree is too large,
collapse LRU nodes into single node

• Works well with coherent queries

Results

Results

Results

Results

Results

Results

Results

