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Overview

Quick intro to photon
mapping

What’s ray mapping?
What does it solve?

What do we need to

(b)

h ? Figure 1: The direct visualization with (a) photon maps and
a Ve . (b) ray maps. Notice the boundary bias removal on the lamp

for ray maps.

How do we do that?




Photon Mapping

2 pass rendering scheme:

* First: Trace photons from s

light source —u g

— Similar to MC path tracing H

— Record location when photon I-—-JJ’ || “ N\

hits surface

 Second: Use photon hit \IJ:"’
densities to estimate
indirect radiance | f




Density Estimation

* At a point x in the scene, estimate indirect
irradiance as a weighted sum of N nearest
neighbor photons x; with irradiance ¢,

N
IR(x) = Z K(‘x — xj‘)cpj
i=1

where K is some weighting function (kernel).




Problems with Photon Mapping

* a: Proximity bias — finite number of j /
samples leads to blurring 'ke;elwidth“‘
— General problem w/density methods @

* b: Boundary bias — underestimate /A%///
boundary illumination //"* /
— Overestimating effective SA /A

* c: Topological bias — underestimate ®

SA for curved surfaces
— Leads to overestimating illumination




Ray Mapping to the Rescue

* Proximity bias (a) will always be
present

e But, can solve (b) and (c) by
considering rays rather than
contacts fa |

* So: record entire rays rather than ()

just photon contact points in first /E
Pass 7% >//




Basic Operations

* |n practice, l.(a),
l.(b) most useful

— Check if ray hit the
right side of a disc

Figure 2: Three nearestneighbors according fo differentray @ I I . (a ) an d I I . ( b) u Sed

distance metrics. (left) Euclidean distance of intersection of

the ray with a tangent plane. (right) Euclidean distance of togeth er fo r KN N

the ray itself and the center of the query.

I. Intersection Queries o Elther II,(a) Or ”.(C)

Intersection domain: (a) disc, (b) hemisphere, (c) sphere,

(d) axis aligned bounding box. U SEd tO eStl m ate

II. Nearest Neighbors Queries .
Proximity mefric: (a) distance to the intersection of the ray d ens |ty ( Uusu. I I . (a ) )
with the tangent plane, (b) distance to the ray segment, (¢)
distance to the supporting line of the ray.




Implementation




Requirements

* Need to find rays in proximity to a point
 Minimize number of rays examined

* These are same goals as in photon mapping




Store Rays in K-d Tree

Binary tree
Each node corresponds to box in space

Children correspond to smaller boxes,
split by a splitting plane L to an axis

Each node (box) contains a list of all rays that
Intersect it
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(a)

(b)

(c)




K-d Tree Construction

* Root

e Subdivide node in direction of greatest length
— # of rays in node > constant
— diagonal of node is too large
— depth of node is less than constant

* Place splitting plane in middle of current node




Lazy Tree Construction

* When we use the K-d tree for lookup,
subdivide the leaf nodes we traverse
when necessary

e Splitting plane in middle of node is O(1) and
facilitates fast dynamic construction

 Empirically provides better performance than
more complicated splitting plane decisions




Ray Lookup

* k-nearest neighbors query about a point
* Independent of distance metric

1. Assign each node of the k-d tree a priority

2. Priority equals minimal distance between
qgueried point and node (box)

3. Examine nodes by increasing priority in a
priority queue




Ray Lookup

4. Keep a current list of k closest rays

5. At a leaf node, examine rays in node and
update our current list

6. Terminate when farthest ray in current list is
closer than priority of current node

* |In practice, build priority queue dynamically




Extension: Directional Nodes

* Prune nodes (boxes) that do not contain rays
pointing in the correct direction

reference
covered query  direction
normals

infeasible ray directions
/" (front child)

o

L

%, feasible ray directions
(back child)




Extension: Query Coherence

* Consecutive queries may be around points
close to each other

* These queries will explore the same nodes

e Remember those nodes
If new query close enough to last query,
pre-dump nodes into priority queue




Extension: Memory Cap

* Tag each node in k-d tree with time of last
access (i.e. last put onto priority queue)

* When subdividing, if k-d tree is too large,
collapse LRU nodes into single node

* Works well with coherent queries




Results
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Results

Topological bias

(cosine distributed ray direction)
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Results

Rays Found | Succ. Tests | Query Time
10° [%)] [ms]

[ 1o [ o] 270 o016 ]
378 100 27.7 0.22
944 100 26.0 0.42
1887 100 25.0 (.88

Table 2: Dependence of the query performance on the num-
ber of rays stored in the ray map for the Cornell box. The
results are averaged using 53,000 nearest neighbor queries.




Results

Scene Rays | Queries Method | Found | Succ. Tests | Memory | Collapses | Query Time | Speedup

[10°] | [10°] Rays [%] [MB] [%] [ms] [-]
e I S I I
Cognac 67 128 515] ;g .Szg :;“; [‘} {’}i | 12
T ) I I I I I I S
S N N O S Y )

Table 1: Comparison of the K-nearest neighbor query performance for the kD-tree based ray map(RM) implementation and
the dynamic list of spheres(SP). * For the last SP test we had to reduce the search radius to 0.5% of the scene size to obtain
reasonable timings. If the initial radius was larger, there were too many rays in the candidate list leading to running times of
more than two orders of magnitude greater than for the ray map method.




Results

Found || Succ. Tests | Query Time
[%] |ms]

20 1.5 0.70

50 19.2 0.75
100 25.0 0.88
200 33.4 1.02
500 44.0 1.49

Table 3: Dependence of the query performance on the num-
ber of desired nearest neighbors. The measurement was con-
ducted for the Cornell Box using 1.8 x 10° rays and 53,000
queries.




Results

Scene Time]|s] Time|s| Time|s]| Ratio [-]
ray map | photmap | phot.map | phot.map
conv. hull | /ray map

Cornell Box 311 70 116 4.4
Cognac 293 63 103 4.7
Office 195 41 71 4.7
Sala 240 115 178 2.1

Table 4: Rendering times for density estimation with photon
maps, photon maps with convex hull, and ray maps without
final gathering for resolution 1000 x 1000 pixels. Only indi-
rect illumination was computed.




Results

Figure 8: The test scenes rendered using photon tracing with direct visualization of photon maps using density estimation: the
Cornell Box, Cognac, Office, and Sala.

Figure 9: The test scenes rendered using photon tracing with direct visualization of ray maps using density estimation: the
Cornell Box, Cognac, Office, and Sala.




