
GigaVoxels
Ray-Guided Streaming for Efficient and Detailed Voxel

Rendering

Presented by:

Jordan Robinson
Daniel Joerimann

Outline

 Motivation

 GPU Architecture / Pipeline

 Previous work

 Support structure / Space partitioning

 Rendering

 Tree updating on the GPU

 Results

Motivation

Why Voxels?

 Visualizing scientific data /
3D scans

 Easy to manipulate

 Good for pseudo-surfaces

... but hard to render very
large data sets with interactive
rates (Real time)

GPU Architecture / Pipeline

Previous Work

 GPU Gems 2: Octree Textures on the GPU by
Lefebvre, Hornus, Neyret 2005

 Rendering Fur With Three Dimensional
Textures by Kajiya and Kay 1989

 On-the-fly Point Clouds through Histogram
Pyramids by Ziegler, Tevs, Theobalt, Seidel
2006

 High-Quality Pre-Integrated Volume
Rendering Using Hardware-Accelerated Pixel
Shading by Engel, Kraus, Ertl 2001

Space partitioning

 Sparse distribution of
voxels

 Voxels have to be
organized

 Accelerates Ray
Traversal

 Spatial N3
 –Trees

 Typically N = 2

 Octree

Support structure

 Split into tree and
bricks

 Node:

 Corresponds to a node
in the N3 tree

 Brick:

 Contains the Voxel data

Support structure: Brick

 Bricks are stored in a
large shared 3D –
Texture (Brick pool)

 Voxel-grid of size M3
(usually M=32)

 3D-Mip-Mapped

Support structure: Memory layout

 Tree-Nodes and bricks
are stored in 3D
Textures (Node Pool
and Brick Pool)

 Nodes can point to
child nodes and a
corresponding brick

Support structure: Node Texel

 Contains (64 bits):
 3D Pointer (X,Y,Z) to the next level in the tree (N3 child

nodes)
 Constant Color or Brick Pointer
 Flag indicating whether it is a leaf node
 Flag indicating the node type (Constant Color or Brick

pointer)

Rendering

1. Rendering of a proxy geometry to generate rays

2. Tracing the rays into the tree
(Up to the needed LOD)

3. Shade pixel

4. Tree updates

Rendering: Proxy geometry

 Needed to initialize (create) rays

 Either a bounding box or some approximate
geometry of the volume

 Render front faces and back faces defining the
view rays into a texture

Rendering: Tracing rays

 Render the flat texture
(from the step before)

 Walk the tree / bricks
for every pixel in the
fragment shader

 DDA could be used but
is inefficient on the GPU

 Iterative descent is
faster due to the GPU
cache

Rendering: High Quality Filtering

 The filtering quality for the previous ray
traversal method could be improved

 3 MIP-Map levels are used to filter

Pixel shading

 Accumulated color and opacity values

 Phase function

 Pre-integrated transfer function

 Using the density gradient as the normal for
pseudo-Phong shading

Tree updates / Memory management

 The entire tree and brick pool are usually too
large to fit into the GPU memory

 Interrupting and updating

 Multiple passes

 Mark pixels with insufficient data

1. Interrupt

2. Load missing data

3. Continue

 Early-Z and Z-Cull prevents pixels with terminated
rays from being overdrawn

Advanced Algorithm

 Interrupting and updating is too slow: Requires lots of
CPU interaction (CPU-GPU bandwidth is limited)

 Try to keep all needed data available in the GPU’s
memory

 => Render one frame in one step

 Every node and brick has a Timestamp in the CPU’s
memory

 Replaces nodes and bricks by LRU

Advanced Algorithm

CPU:

while (true)

 Render image (using the GPU)

 Get list of accessed/needed nodes from the GPU

 Reset timestamp of accessed nodes

 Expand or collapses nodes

 Update GPU memory with needed nodes (LRU)

GPU: Fragment shader

First pass:

 Trace ray

 if LOD not available

 Pick next higher available level in Mip-map

 Shade pixel

 Keep a list of accessed nodes / Mip-map levels in result textures

Second pass:

 Compress accessed/needed data

Advanced Algorithm

 Node list is stored in multiple render targets
(MRTs)

 RGBA32 = 4 x 32 bit

 One node pointer uses 32 bits

 One channel per node pointer

 Can store up to 12 node id’s per pixel using 3
MRTs

Advanced Algorithm: Compression

 Spatial node coherence

 Normally 3 MRTs would not be enough

 Neighboring rays traverse similar nodes

 Group in 2x2 grid

Advanced Algorithm: Compression

 Temporal coherence:
 Used nodes are similar between subsequent

frames

 FIFO (48 items)
 48-element window is shifted after each subsequent

frame

 First frame: push up to 48 nodes into the FIFO

 Second frame: push up to 96 nodes into the FIFO

1  Push node 1

 Push node 2

 Push node 4

…

1 2

1 2 3 4

2 3 4 5  Push node 5

 Push node 6 3 4 5 6

Advanced Algorithm: Compression

 Compaction of update information
 Preprocess update information before compaction
 Use mask to remove redundant node selections
 Compaction step by using Histogram pyramids covered in:
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf

 Final step
 Fit as much as possible in one RGBA32 texture (4 Nodes per pixel)
 Postpone to next frame if the limit is exceeded
 Usually 2-3 nodes per pixel are selected

http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf

Results

 Explicit volume (trabecular bone)
 81923 Voxels

 20 – 40 Fps (Mip-mapping enabled)
 60 Fps (Mip-mapping disabled)
 System: Core2 bi-core E6600 at 2.4 GHz & NVIDIA 8800 GTS 512MB

Results

 Hypertextured bunny
 10243 Voxels
 20fps
 System: Core2 bi-core E6600 at 2.4 GHz & NVIDIA 8800 GTS

512MB

Video

Questions?

