GigaVoxels

Ray-Guided Streaming for Efficient and Detailed Voxel
Rendering

Presented by:
Jordan Robinson
Daniel Joerimann

Outline

= Motivation

= GPU Architecture / Pipeline

" Previous work

= Support structure / Space partitioning
= Rendering

" Tree updating on the GPU

= Results

Motivation

Why Voxels?
= Visualizing scientific data /
3D scans
= Easy to manipulate WA
= Good for pseudo-surfaces % ' ;

.. but hard to render very
large data sets with interactive ()

GPU Architecture / Pipeline

Input
Assembly

Vertex attributes

Patches

Vertex Program Tessellation

Control Program

Executed for

Executed for each
each vertex

output vertex

Transformed vertices

UVW coordinates

Tessellation

Primitive Evaluation Program
Assembly Executed for each
Transformed _ tessellation vertex

Points, lines, or triangles Vertices

Transform
Feedback Executed for
each primitive

EI Fixed-function stage

Points, line strip, or triangle strip D Programmable stage

o : Optional stage
Rasterization

Fragments

Fragment Program

Executed for each pixel
(per sample possible)

Color(s), depth, stencil ref

Frame Buffer
Operations

Previous Work

= GPU Gems 2: Octree Textures on the GPU by
Lefebvre, Hornus, Neyret 2005

= Rendering Fur With Three Dimensional
Textures by Kajiya and Kay 1989

* On-the-fly Point Clouds through Histogram
Pyramids by Ziegler, Tevs, Theobalt, Seidel
2006

* High-Quality Pre-Integrated Volume
Rendering Using Hardware-Accelerated Pixel
Shading by Engel, Kraus, Ertl 2001

Space partitioning

= Sparse distribution of
voxels

= \Voxels have to be
organized

= Accelerates Ray
HEVEE]

= Spatial N°> Trees

= Typically N =2
Octree

Support structure

= Split into tree and
bricks

= Node:

Corresponds to a node
in the N3 tree

= Brick:

Contains the Voxel data

Support structure: Brick

= Bricks are stored in a
large shared 3D —
Texture (Brick pool)

= Voxel-grid of size M3
(usually M=32)

= 3D-Mip-Mapped

Support structure: Memory layout

= Tree-Nodes and bricks
are stored in 3D
Textures (Node Pool
and Brick Pool)

= Nodes can point to
child nodes and a
corresponding brick

Support structure: Node Texel

= Contains (64 bits):

3D Pointer (X,Y,Z) to the next level in the tree (N3 child
nodes)

Constant Color or Brick Pointer
Flag indicating whether it is a leaf node

Flag indicating the node type (Constant Color or Brick
pointer)

Node Texel Constant color

Nodes Tile pointer ‘ B B A
8

Max subdivision flag _S_Or 8 8
INOde Lype ﬂag | 2d Brlck k pointer

Lkt 1o 20 10, 10 100
Lummance (32 bits Ulnt) AI pha (32 bits Ulnt)

Rendering

1. Rendering of a proxy geometry to generate rays

2. Tracing the rays into the tree
(Up to the needed LOD)

3. Shade pixel

4. Tree updates

Rendering: Proxy geometry

= Needed to initialize (create) rays

»= Either a bounding box or some approximate
geometry of the volume

= Render front faces and back faces defining the
view rays into a texture

Rendering: Tracing rays

= Render the flat texture
(from the step before)

= Walk the tree / bricks
for every pixel in the
fragment shader

DDA could be used but
is inefficient on the GPU

Iterative descent is
faster due to the GPU
cache

Rendering: High Quality Filtering

= The filtering quality for the previous ray
traversal method could be improved

= 3 MIP-Map levels are used to filter

Pixel shading

= Accumulated color and opacity values
= Phase function
"= Pre-integrated transfer function

= Using the density gradient as the normal for
pseudo-Phong shading

Tree updates / Memory management

* The entire tree and brick pool are usually too
large to fit into the GPU memory

" |Interrupting and updating
= Multiple passes

= Mark pixels with insufficient data
1. Interrupt
2. Load missing data
2. Continue

0 Earli-Z and Z-Cull irevents iixels with terminated

Advanced Algorithm

* |nterrupting and updating is too slow: Requires lots of
CPU interaction (CPU-GPU bandwidth is limited)

= Try to keep all needed data available in the GPU’s
memory

= =>Render one frame in one step

= Every node and brick has a Timestamp in the CPU’s
memory

= Replaces nodes and bricks by LRU

Advanced Algorithm

CPU:
while (true)
Render image (using the GPU)
Get list of accessed/needed nodes from the GPU
Reset timestamp of accessed nodes
Expand or collapses nodes
Update GPU memory with needed nodes (LRU)

GPU: Fragment shader
First pass:
Trace ray
if LOD not available
Pick next higher available level in Mip-map

Shade pixel

Advanced Algorithm

= Node list is stored in multiple render targets
(MRTSs)

= RGBA32 =4 x 32 bit
= One node pointer uses 32 bits
= One channel per node pointer

= (Can store up to 12 node id’s per pixel using 3
MRTs

Advanced Algorithm: Compression

= Spatial node coherence
Normally 3 MRTs would not be enough
Neighboring rays traverse similar nodes
Group in 2x2 grid

Nodes | Nodes
[1,12] | [13,24]
Nodes Nodes
[25,36] HSEas]

Advanced Algorithm: Compression

= Temporal coherence:

= Used nodes are similar between subsequent

frames
= FIFO (48 items)

48-element window is shifted after each subsequent

frame

First frame: push up to 48 nodes into the FIFO
Second frame: push up to 96 nodes into the FIFO

1 < Push node 1

1|2 < Push node 2

2

3

4

5

3

4

)

6

< Push node 5

< Push node 6

Advanced Algorithm: Compression

= Compaction of update information
Preprocess update information before compaction
Use mask to remove redundant node selections

Compaction step by using Histogram pyramids covered in:
http://www.mpi-inf. mpg.de/~gziegler/gpu pointlist/paperl? gpu pointclouds.pdf

Final step
Fit as much as possible in one RGBA32 texture (4 Nodes per pixel)
Postpone to next frame if the limit is exceeded
Usually 2-3 nodes per pixel are selected

o o e e

1 I 1 1
———————————————

[P —————

List of nodes List of nodes
to test from a neighbor

http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf
http://www.mpi-inf.mpg.de/~gziegler/gpu_pointlist/paper17_gpu_pointclouds.pdf

Results

e T o
?"w\‘ A
e

= Explicit volume (trabecular bone)
- 81923 Voxels
© 20 -40 Fps (Mip-mapping enabled)

Results

= Hypertextured bunny
10243 Voxels

20fps
System: Core2 bi-core E6600 at 2.4 GHz & NVIDIA 8800 GTS

512MB

Video

Questions?

