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Volume rendering methods

Ray casting (image order)

Compositing (object becomes image order)

Spatting (object order)

Fourier



Volume rendering by ray casting

[Levoy 1988]



Volume rendering by resampling
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Figure 3: The shear-warp algorithm includes three conceptual 

steps: shear and resample the volume slices, project resampled 

voxel scanlines onto intermediate image scanlines, and warp the 
intermediate image into the final image. 

3. Transform the intermediate image to image space by warp- 

ing it according to Mw~. This second resampling step 
produces the correct final image. 

The parallel-projection version of this algorithm was first de- 

scribed by Cameron and Undrill [l]. Our new optimizations are 
described in the next section. 

The projection in sheared object space has several geometric 
properties that simplify the compositing step of the algorithm: 

Property 1: Scanlines of pixels in the intermediate 

image are parallel to scanlines of voxels in the volume 
data. 

Property 2: All voxels in a given voxel slice are 
scaled by the same factor. 

Property 3 (parallel projections only): Every voxel 

slice has the same scale factor, and this factor can 

be chosen arbitrarily. In particular, we can choose a 

unity scale factor so that for a given voxel scanline 
there is a one-to-one mapping between voxels and 

intermediate-image pixels. 

In the next section we make use of these properties. 

3 Shear-Warp Algorithms 

We have developed three volume rendering algorithms based on 

the shear-warp factorization. The first algorithm is optimized for 

parallel projections and assumes that the opacity transfer function 

does not change between renderings, but the viewing and shad- 

ing parameters can be modified. The second algorithm supports 
perspective projections. The third algorithm allows the opacity 

transfer function to be modified as well as the viewing and shad- 
ing parameters, with a moderate performance penalty. 

3.1 Parallel Projection Rendering Algorithm 

Property 1 of the previous section states that voxel scanlines in the 

sheared volume are aligned with pixel scanlines in the intermediate 
image, which means that the volume and image data structures can 
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Figure 4: Offsets stored with opaque pixels in the intermediate 

image allow occluded voxels to be skipped efficiently. 

both be traversed in scanline order. Scanline-based coherence data 

structures are therefore a natural choice. The first data structure we 

use is a run-length encoding of the voxel scanlines which allows us 

to take advantage of coherence in the volume by skipping runs of 

transparent voxels. The encoded scanlines consist of two types of 

runs, transparent and non-transparent, defined by a user-specified 

opacity threshold. Next, to take advantage of coherence in the 

image, we store with each opaque intermediate image pixel an 

offset to the next non-opaque pixel in the same scanline (Figure 4). 

An image pixel is defined to be opaque when its opacity exceeds 

a user-specified threshold, in which case the corresponding voxels 

in yet-to-be-processed slices are occluded. The offsets associated 

with the image pixels are used to skip runs of opaque pixels 

without examining every pixel. The pixel array and the offsets 

form a run-length encoding of the intermediate image which is 

computed on-the-fly during rendering. 

These two data structures and Property 1 lead to a fast scanline- 

based rendering algorithm (Figure 5). By marching through the 

volume and the image simultaneously in scanline order we reduce 

addressing arithmetic. By using the run-length encoding of the 

voxel data to skip voxels which are transparent and the run-length 

encoding of the image to skip voxels which are occluded, we per- 

form work only for voxels which are both non-transparent and 
visible. 

For voxel runs that are not skipped we use a tightly-coded 

loop that performs shading, resampling and compositing. Prop- 

erties 2 and 3 allow us to simplify the resampling step in this 

loop. Since the transformation applied to each slice of volume 

data before projection consists only of a translation (no scaling or 

rotation), the resampling weights are the same for every voxel in 

a slice (Figure 6). Algorithms which do not use the shear-warp 

factorization must recompute new weights for every voxel. We 

use a bilinear interpolation filter and a gather-type convolution 

(backward projection): two voxel scanlines are traversed simulta- 

neously to compute a single intermediate image scanline at a time. 
Scatter-type convolution (forward projection) is also possible. We 

use a lookup-table based system for shading [6]. We also use a 

lookup table to correct voxel opacity for the current viewing angle 

voxel scanline: ! [ ] [ I I 

" | resample and ' 

I '  composite 
image !ntermediate : i ! : 

scanline: ~ ~! ~! =! ~ :  =.. 

skip i work ! skip i work I skip 

[ ]  transparent voxel run • opaque image pixel run 

[ ]  non-transparent voxel run [ ]  non-opaque image pixel run 

Figure 5: Resampling and compositing are performed by stream- 
ing through both the voxels and the intermediate image in scanline 

order, skipping over voxels which are transparent and pixels which 
are opaque. 
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The reflected surface color, Cs, is a function of the sur- 

face normal, the strength of the surface, the diffuse color of  the 

surface Co, the direction L ~ and color CL of the light source, 

and the eye position ft .  The color of  the reflected light has two 

components, a diffuse component whose color is given by the 

color of  the surface, and a specular component whose color is 

given by the color of the light. The formula is 

C s = (f (~,L~)CD + g (E~,L~)CL) in S 

where f and g are diffuse and specular shading functions, and 

Co is the diffuse color of the surface. Appropriate functions 

for f and g are discussed in (Phong, 1975, Blinn, 1982, Cook, 

1982). Note that the amount of  surface shading is proportional 

to the strength of  the surface. No rettected light will appear in 

the interior of a homogeneous material. 

The simplest approach is to set the surface diffuse color 

equal to CD =CF+Cs; that is, treat the color of  the surface as 

the color of  the mixture, and to just add it into the mixture. C 

is then set equal to CsoverCD . The problem with this 

approach is that color from neighboring materials bleed into 

the surface. For example, if white bones are next to red muscle 

tissue, the bleeding will cause the surfaces of  the bones to 

appear pink. The best choice for Co is CB, but this is techni- 

cally difficult because it is not known which of the materials in 

the mixture is the back material and which is the front. One 

solution to this problem is to examine the sign of the density 

gradient in the direction of  view. If it is positive, the front of  

the voxel has a lower 9 than the back; otherwise the front has a 

higher p. Once the materials are ordered from front to back, 

the colors can be assigned accordingly. 

Viewing and  Projec t ion  

An image is computed by projecting the volume onto the 

image plane. One common method used to perform this pro- 

jection is to cast rays through the volume array. The problem 

with this approach is that sampling artifacts may occur and it is 

computationally expensive since it requires random access to 

the volume data. The approach used in this algorithm is to first 

transform the volume so that the final image lies along the 

front face of the viewing pyramid, and so that rays through the 

vantage point are all parallel and perpendicular to the image 

plane. The transformation of  the volume can be done 

efficiently in scanline order which also allows it to be properly 

resampled. Modeling light transmission during projection is 

also particularly convenient in this coordinate system. 

After the shading calculation, there exists a RGBct 

volume C.  As the projection occurs, the intensity of light is 

modeled according to the equations described in the previous 

section. Each colored plane of  the volume is overlaid on top of  

the planes behind it from back to front using the over  operator. 

The orthographic projection through the z'th plane of  the 

volume can be expressed as: 

Iz = Cz over  lz+l 

where I is the accumulated image, Cz is the color-opaci ty  of 

plane z. The initial image In is set to black and the final image 

is I0. This algorithm need not store the I volume, just the final 

image. This multi-plane merge could just as easily be done 

from front to back using the u n d e r  operator 

(A u n d e r B  =- B over  A).  

It is important to be able to view the volume with an arbi- 

trary viewing transformation, which includes translation, rota- 

tion, scaling, and perspective. In order to preserve the simpli- 

city of the parallel merge projection, the viewing coordinate 

system is fixed, and the volume is geometrically transformed 

and resampled to lie in that coordinate system. This is done as 

a sequence of 4 transformations, 

T=ez (Ze ) Rz (~)Ry ( ~ )Rz (0) 

where Rz and Ry are rotations about the z and y axes, respec- 

tively, and Pz is the perspective transformation. The transfor- 

mations are parameterized by the Euler angles, (0,~,xg), and Ze, 

the z coordinate of the eye point. In many applications, a 

sequence of  orthographic views corresponding to a rotation 

about only single axis is required, so that only one of  the 

rotates is required, and the viewing transformation can be done 

in 1/4 the time. Since each rotation is perpendicular to an axis 

of  the volume, the volume rotation can be performed by 

extracting individual slices along the axis perpendicular to the 

rotation axis, rotating them individually as images, and then 

placing them into the result volume. Performing a three- 

dimensional rotation using a sequence of three rotates requires 

the ability to extract planes perpendicular to at least two axes 

(y and z). This requires either an intermediate transposition of  

the volume, or a storage scheme which allows fast access along 

two perpendicular directions. Pz is a perspective transforma- 

tion with the eye point on the z-axis. This can be efficiently 

implemented by scanning sequentially through slices in z, and 

resizing the x-y images by l l ( z e - z )  - that is, magnifying 

images near the eye relative to images far from the eye. Rota- 

tions and scalings are both special cases of  an affine transfor- 

mation. Two-dimensional affine transformations can be per- 

formed using the two-pass scanline algorithms discussed in 

(Catmui1, 1980). For the viewing transformation outlined 

above, this requires as many as 8 resampling operations. It 

should be possible to generalize the two-pass image 

transformation to a three-pass volume transformation and 

reduce the number of resarnpling operations. It is important 

when performing these geometric manipulations that the 

images be reconstructed and resampled using either triangular 

or bicubic filters to preserve the continuity of the data. Poor 

reconstruction and resampling will introduce artifacts in the 

final images. 

Results 

Figures 4-12 show images of  various volumes rendered 

with the above techniques. Figures 4-6 are medical images 

based on CT data sets. Figure 4 shows four images rendered 

with different material properties and variations of  the algo- 

rithms presented in this paper. Figure 5 illustrates an applica- 

tion of  a matte volume to cut-away a wedge from the child 's  

head. Figure 6 shows a whole body reconstruction of an adult 

male with different colors and opacities on the left and fight 

halves. The volume rendering technique has been shown to be 

valuable in clinical applications CFishman, 1987, Scott, 1987). 

A biological application of  the volume rendering algorithm is 

shown in Figure 7: a whole body image of  a sea otter. This 

image lead to the discovery that adult sea otters have an exa~a 

wrist bone not present in young otters (Discover, 1988). Fig- 

ure 8 shows a physical sciences application of  volume render- 

ing. Figure 8 is a rendered image of  a smoke puff. The origi- 

nal input data set was acquired as a sequence of  images from a 

CCD camera. Each image was a cross section of  the smoke 
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Figure 1: A volume is transformed to sheared object space for 

a parallel projection by translating each slice. The projection in 

sheared object space is simple and efficient. 
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Figure 2: A volume is transformed to sheared object space for a 

perspective projection by translating and scaling each slice. The 

projection in sheared object space is again simple and efficient. 

sampling filter footprint is not view dependent, so the resampling 

complications of splatting algorithms [20] are avoided. Several 

other algorithms also use multipass resampling [4] [7] [19], but 

these methods require three or more resampling steps. Our al- 

gorithm requires only two resampling steps for an arbitrary per- 

spective viewing transformation, and the second resampling is an 

inexpensive 2D warp. The 3D volume is traversed only once. 

Our implementation running on an SGI Indigo workstation can 

render a 2563 voxel medical data set in one second, a factor of at 

least five faster than previous algorithms running on comparable 

hardware. Other than a slight loss due to the two-pass resampling, 

our algorithm does not trade off quality for speed. This is in 

contrast to algorithms that subsample the data set and can therefore 

miss small features [10] [3]. 

Section 2 of this paper describes the shear-warp factoriza- 
tion and its important mathematical properties. We also describe 

a new extension of the factorization for perspective projections. 

Section 3 describes three variants of our volume rendering algo- 

rithm. The first algorithm renders classified volumes with a paral- 

lel projection using our new coherence optimizations. The second 

algorithm supports perspective projections. The third algorithm is 

a fast classification algorithm for rendering unclassified volumes. 

Previous algorithms that employ spatial data structures require an 
expensive preprocessing step when the opacity transfer function 

changes. Our third algorithm uses a classification-independent 

rain-max octree data structure to avoid this step. Section 4 con- 

tains our performance results and a discussion of image quality. 

Finally we conclude and discuss some extensions to the algorithm 

in Section 5. 

2 The Shear-Warp Factorization 

The arbitrary nature of the transformation from object space to 

image space complicates efficient, high-quality filtering and pro- 

jection in object-order volume rendering algorithms. This problem 

can be solved by transforming the volume to an intermediate co- 

ordinate system for which there is a very simple mapping from the 

object coordinate system and which allows efficient projection. 

We call the intermediate coordinate system "sheared object 

space" and define it as follows: 

Definition 1: By construction, in sheared object space 
all viewing rays are parallel to the third coordinate 

axis. 

Figure 1 illustrates the transformation from object space to sheared 

object space for a parallel projection. We assume the volume is 

sampled on a rectilinear grid. The horizontal lines in the figure 
represent slices of the volume data viewed in cross-section. After 

transformation the volume data has been sheared parallel to the set 

of slices that is most perpendicular to the viewing direction and 

the viewing rays are perpendicular to the slices. For a perspective 

transformation the definition implies that each slice must be scaled 

as well as sheared as shown schematically in Figure 2. 

Definition 1 can be formalized as a set of equations that trans- 
form object coordinates into sheared object coordinates. These 

equations can be written as a factorization of the view transfor- 

marion matrix Mview as follows: 

Mview = P '  S - Mwaw 

P is a permutation matrix which transposes the coordinate system 

in order to make the z-axis the principal viewing axis. S trans- 

forms the volume into sheared object space, and M w ~  transforms 
sheared object coordinates into image coordinates. Cameron and 

Undrill [1] and SchrSder and Stoll [17] describe this factorization 

for the case of rotation matrices. For a general parallel projection 

S has the form of a shear perpendicular to the z-axis: (1000) 
Spar = 0 1 0 0 

Sx sv 1 0 

0 0 0 1 

where s= and s u can be computed from the elements of Mview. 

For perspective projections the transformation to sheared object 

space is of the form: 

1 0 0 0 / 

Sper~p 0 1 0 0 
- ~  l i 1 i 

'-qx 8y s w 

0 0 0 1 

This matrix specifies that to transform a particular slice z0 of 

voxel data from object space to sheared object space the slice 

must be translated by (zos~, zos~) and then scaled uniformly by 

1/(1 + z0s~). The final term of the factorization is a matrix 

which warps sheared object space into image space: 

Mwarp = S-1 . p - 1  . Mview 

A simple volume rendering algorithm based on the shear-warp 

factorization operates as follows (see Figure 3): 

1. Transform the volume data to sheared object space by trans- 

lating and resampling each slice according to S. For per- 

spective transformations, also scale each slice. P specifies 

which of the three possible slicing directions to use. 

2. Composite the resampled slices together in front-to-back 

order using the "over" operator [15]. This step projects 
the volume into a 2D intermediate image in sheared object 

space. 
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Data set 

brainsmall 

headsmall 

brain 

head 

Size (voxels) 

128x128x109 

128x128x113 

256x256x167 

256x256x225 

Parallel projection (§ 3.1) 

Avg. Min/Max Mere. 

0.4 s. 0.37-0.48 s. 4 Mb. 

0.4 0.35-0.43 2 

1.1 0.91-1.39 19 

1.2 1.04-1.33 13 

Perspective projection (§3.2) Fast classification (§3.3) 

Avg. Min/Max Mem. Avg. Min/Max Mem. 

1.0 s. 0.84-1.13 s. 4 Mb. 0.7 s. 0.61-0.84 s. 8 Mb. 

0.9 0.82-1.00 2 0.8 0.72-0.87 8 

3.0 2.44-2.98 19 2.4 1.91-2.91 46 

3.3 2.99-3.68 13 2.8 2.43-3.23 61 

Table 1: Rendering time and memory usage on an SGI Indigo workstation. Times are in seconds and include shading, resampling, 

projection and warping. The fast classification times include rendering with a parallel projection. The "Mem." field is the total size of 
the data structures used by each algorithm. 
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Figure 11 : Rendering time for a parallel projection of the head 

data set as the viewing angle changes. 

shows the time required for all three copies of the run-length 

encoded volume to be computed from the unencoded volume and 

the min-max octree once the user has settled on an opacity transfer 

function. 

The timings above are for grayscale renderings. Color ren- 

derings take roughly twice as long for parallel projections and 

1.3x longer for perspective because of the additional resampling 

required for the two extra color channels. Figure 13 is a color 

rendering of the head data set classified with semitransparent skin 

which took 3.0 sec. to render. Figure 14 is a rendering of a 

256x256x 110 voxel engine block, classified with semi-transparent 

and opaque surfaces; it took 2.3 sec. to render. Figure 15 is a ren- 

dering of a 256x256x159 CT scan of a human abdomen, rendered 

in 2.2 sec. The blood vessels of the subject contain a radio-opaque 

dye, and the data set was classified to reveal both the dye and bone 

surfaces. Figure 16 is a perspective color rendering of the engine 

data set which took 3.8 sec. to compute. 

For comparison purposes we rendered the head data set with 

a ray-caster that uses early ray termination and a pyramid to ex- 

ploit object coherence [12]. Because of its lower computational 

overhead the shear-warp algorithm is more than five times faster 

for the 1283 data sets and more than ten times faster for the 2563 

data sets. Our algorithm running on a workstation is competitive 

with algorithms for massively parallel processors ([17], [19] and 

others), although the parallel implementations do not rely on co- 

herence optimizations and therefore their performance results are 

not data dependent as ours are. 

Our experiments show that the running time of the algorithms 

in Sections 3.1-3.2 is proportional to the number of voxels which 

are resampled and composited. This number is small either if a 

significant fraction of the voxels are transparent or if the aver- 

age voxel opacity is high. In the latter case the image quickly 

becomes opaque and the remaining voxels are skipped. For the 

data sets and classification functions we have tried roughly n 2 

voxels are both non-transparent and visible, so we observe O(n 2) 
performance as shown in Table 1: an eight-fold increase in the 

~ P r e p r o c e s s  Dataset 

. . . . . . . .  t 77sec.____ Switc 

I v°lume + l octree 
• 2280 msec. 

intermediateimage I 

. ~ 0  msec. 

New Classification- i~:3-.:3) 

Switch 
Modes 

8.5 sec. 

,I run-length 
I encoding I 

980 msec. 

intermediateimage I 

e l  0 msec. ; 

New viewpoint (§3.1) 

Figure 12: Performance results for each stage of rendering the 

brain data set with a parallel projection. The left side uses the 

fast classification algorithm and the right side uses the parallel 

projection algorithm. 

number of voxels leads to only a four-fold increase in time for 

the compositing stage and just under a four-fold increase in over- 

all rendering time. For our rendering of the head data set 5% of 

the voxels are non-transparent, and for the brain data set 11% of 

the voxels are non-transparent. Degraded performance can be ex- 

pected if a substantial fraction of the classified volume has low but 

non-transparent opacity, but in our experience such classification 

functions are less useful. 

4.2 Image Quality 

Figure 10 is a volume rendering of the same data set as in Figure 9, 

but produced by a ray-caster using tfilinear interpolation [12]. The 

two images are virtually identical. 

Nevertheless, there are two potential quality problems associ- 

ated with the shear-warp algorithm. First, the algorithm involves 

two resampling steps: each slice is resampled during composit- 

ing, and the intermediate image is resampled during the final warp. 

Multiple resampling steps can potentially cause blurring and loss 

of detail. However even in the high-detail regions of Figure 9 this 
effect is not noticeable. 

The second potential problem is that the shear-warp algorithm 

uses a 2D rather than a 3D reconstruction filter to resample the 

volume data. The bilinear filter used for resampling is a first-order 

filter in the plane of a voxel slice, but it is a zero-order (nearest- 

neighbor) filter in the direction orthogonal to the slice. Artifacts 

are likely to appear if the opacity or color attributes of the volume 

contain very high frequencies (although if the frequencies exceed 

the Nyquist rate then perfect reconstruction is impossible). 
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Volume rendering by splatting

~ Computer Graphics, Volume 24, Number 4, August 1990 

hand, the table is coarse, then the renderer needs to inter- 

polate samples from the nearest neighbors. Image 2 

shows this tradeoff on an elliptical projection. Each pie- 

ture in image 1 is of a single sample point scaled 120 by 

60 by 60. The upper left picture in the image uses a 

view-transformed footprint table with 5 by 5 entries. The 

upper fight uses a table that is 11 by 11. The lower left 

uses a table that is 21 by 21. The lower right uses a table 

that is 101 by 101. In each case, the renderer generates 

the table value with a bilinear function. Compared to 

Image 1, the footprint is much smoother on a lot smaller 

table. However, a reasonable table size is required to 

avoid bilinear artifacts. 

kernels, radius is the normalized distance from the 

center of the kernel. The upper left has a cone function 

modeling the result of the z integration. The upper fight 

has a Gaussian function as the model. The lower left 

has the first five lobs of a syne function as the model. 

The lower right has the bilinear function as the model. 

Image 4 is a portion of a computed tomography study of 

a human head. The data is clipped to only show the left 

eye. The spread of the Gaussian kernel changes in each 

sub-image. In the upper left the Gaussian is sealed so 

that its tail stops 25 percent of  the way to the next voxel 

(where 100 percent just touches the next voxel). This 

scale changes from 25 to 225 percent in steps of 25 per- 

cent from left to fight and top to bottom. In the first 

images the kernels are too sharp and do not overlap leav- 

ing gaps. In the last images the kernels are very broad 

and over blur the images. All the images in the follow- 

ing section were generated with a Gaussian kernel with a 

sigma of 2.5 and a spread of 160 percent. 

The third thing to change is the kernel itself. The choice 

of kernel can drastically affect the quality of an image. 

Image 3 is a single sample as above with four different 

Image 5 shows each of the above kernels operaating on a 

3 by 3 by 1 grid of constant values. These kernels are 

approximations to the true z integration of a three- 

dimensional kernel. The view-transformed table as 10 

by 10 entries. The patterns in the upper left image are 

the result of multiple kernels not summing to one at all 

points. The patterns in the lower left image are the result 

of ringing from the sync function at the edges of the 

sample space. Notice the sharp second order discon- 

tinuities at the comers of the image from the bilinear 

function at the lower right. Superimposed on the images 

are line drawings of a single seanline's grey value. The 

green line is when table values were interpolated from 

nearest neighbors. The red line is when just the single 
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nearest neighbor was used. and opacity based on concentration values. Since the 

algorithm works back to front, any image (in this case a 

texture map of state boundaries) can be used as a starting 

working image. The clouds are colored with blue being 

low concentration, going to green for intermediate con- 

eemration, and finally red where concentration exceeds 

the government's legal limits. 

SAMPLE IMAGES 

Image 6 is a single sample with an elliptical projection. 

The four views are of the sample with the volume rotated 

0 degrees, 10 degrees, 30 degrees, and 45 degrees about 

the view direction. The ellipse does not change shape or 

size as the volume grid is rotated about the z axis. Image 8 is an image generated from the electron density 

of the p-orbitals of copper chloride. The input grid is 64 

by 64 by 64 with even spacing in each grid direction. 

The viewing transform has only uniform scaling. The 

shading model is the emittance model with color and 

opacity based on density value. The underlying data has 

no surfaces and the image has a cloudy nature. 

Image 7 is an image of ozone concentrations over the 

northeast corner of the United States in July 15, 1980. 

The input grid is 64 by 52 by 32 with very uneven spac- 

ing in the z direction compared to the x and y directions. 

The shading model is the emittance model with color 
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Image 9 is an isodensity surface from an electron density 

map of Staphylococcus Aureus ribonuclease. The initial 

O SIGGRAPH '90, Dallas, August 6-10, 1990 

region sphere. In addition, the renderer determines a 

mapping of each point in that extent onto the extent sur- 

rounding the unit region sphere in order to build the 

view-transformed footprint table. The projection of the 

unit region sphere on the image plane is a circle. The 

mapping from view-transformed extent to generic extent 

is then a mapping from the projection of the view- 

transformed region to a circle. 

L; ;  L,;i ; ;; ; ;; ; ; ;  ~k; ; ; ;  
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Figure 2. Genetic Footprint Function Table 

EXTENTS AND MAPPINGS 

There are two basic cases for determining extents and 

mappings: the unit sphere maps to a sphere after apply- 

ing the viewing transform, or the unit sphere maps to an 

ellipsoid. The result is a sphere when the input volume 

has equal spacings in each of the grid directions and the 

viewing transform has only uniform scaling. The result is 

an ellipsoid when the input volume has non-uniform 

spacing in each of the grid directions or the viewing 

transform has non-uniform scaling. Since a sphere is a 

special case of an ellipsoid, the renderer currently uses 

the elliptical method described below for all volumes. 

Extent and Mapping for Spherical Kernels 

Figure 3. Spherical Kernel 

Even when the kernel maps to a sphere, the renderer can 

not use the generic table directly and must build a view- 

transformed table. If the grid scale value and the view 

3 7 0  

scale value are both 1.0, the generic table is used, other- 

wise the renderer builds a view-transformed. This makes 

a table access fall exactly at table entries and causes all 

the interpolations to only occur once. 

Extent 

Many input volumes have fewer samples per face than 

the desired number of pixels in the image. This means 

that the input sampling rate is much smaller than the out- 

put sampling rate and each input sample needs to cover 

many pixels. The renderer calculates the extent of a 

sample's effect by scaling the unit extent by the grid 

scale value and the view scale value. 

The extent in both the x and y directions i s :  

extent =2.0*kernel_width* grid_scale*view_scale 

Mapp/ag 

The mapping from scaled extent to unit extent is trivial 

in the case of a spherical result. The projection of the 

sphere onto the image plane is a circle. The mapping 

from one circle to another circle is a scaling by the ratio 

of the radii of the two circles. The mapping is: 

1.0 
mapping = 

grid_scale_factor*view_scale_factor 

The renderer uses the mapping to map ceils of the view- 

transformed footprint table to the generic footprint table. 

If the view is simply rotated and the scale factors do not 

change, the view-transformed footprint table can be used 

again. 

Extant and Mapping for Elliptical Kernels 

Figure 4. Elliptical Kernel 

If the scalings in grid directions are different, the region 

sphere transforms into a region ellipsoid. The projection 

of the region ellipsoid is always a screen space ellipse. 

The extent of a kernel's effect is the extent of  the pro- 

jected ellipse, and the mapping from view-transformed 
table to generic table is a mapping from the projected 

~ Computer Graphics, Volume 24, Number 4, August 1990 

hand, the table is coarse, then the renderer needs to inter- 

polate samples from the nearest neighbors. Image 2 

shows this tradeoff on an elliptical projection. Each pie- 

ture in image 1 is of a single sample point scaled 120 by 

60 by 60. The upper left picture in the image uses a 

view-transformed footprint table with 5 by 5 entries. The 

upper fight uses a table that is 11 by 11. The lower left 

uses a table that is 21 by 21. The lower right uses a table 

that is 101 by 101. In each case, the renderer generates 

the table value with a bilinear function. Compared to 

Image 1, the footprint is much smoother on a lot smaller 

table. However, a reasonable table size is required to 

avoid bilinear artifacts. 

kernels, radius is the normalized distance from the 

center of the kernel. The upper left has a cone function 

modeling the result of the z integration. The upper fight 

has a Gaussian function as the model. The lower left 

has the first five lobs of a syne function as the model. 

The lower right has the bilinear function as the model. 

Image 4 is a portion of a computed tomography study of 

a human head. The data is clipped to only show the left 

eye. The spread of the Gaussian kernel changes in each 

sub-image. In the upper left the Gaussian is sealed so 

that its tail stops 25 percent of  the way to the next voxel 

(where 100 percent just touches the next voxel). This 

scale changes from 25 to 225 percent in steps of 25 per- 

cent from left to fight and top to bottom. In the first 

images the kernels are too sharp and do not overlap leav- 

ing gaps. In the last images the kernels are very broad 

and over blur the images. All the images in the follow- 

ing section were generated with a Gaussian kernel with a 

sigma of 2.5 and a spread of 160 percent. 

The third thing to change is the kernel itself. The choice 

of kernel can drastically affect the quality of an image. 

Image 3 is a single sample as above with four different 

Image 5 shows each of the above kernels operaating on a 

3 by 3 by 1 grid of constant values. These kernels are 

approximations to the true z integration of a three- 

dimensional kernel. The view-transformed table as 10 

by 10 entries. The patterns in the upper left image are 

the result of multiple kernels not summing to one at all 

points. The patterns in the lower left image are the result 

of ringing from the sync function at the edges of the 

sample space. Notice the sharp second order discon- 

tinuities at the comers of the image from the bilinear 

function at the lower right. Superimposed on the images 

are line drawings of a single seanline's grey value. The 

green line is when table values were interpolated from 

nearest neighbors. The red line is when just the single 
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We sampled this signal on a 40 by 40 by 40 lattice in
the range 1 x y z 1, with fM 6 and ! 0 25. The
function has a slow sinusoidal variation in the z direction
and a perpendicular frequency-modulated radial variation.
With the given parameters, it can be shown that the one-
dimensional radial signal has 99.8% of its energy below a
frequency of 10, and our analysis suggests that the spectrum
of the volume as a whole is similarly band-limited. This
makes it acceptable to point sample the function over the
range 1 x y z 1 at 20 samples per unit distance. Note,
however, that a significant amount of the function’s energy
lies near the Nyquist frequency, making this signal a very
demanding filter test—all our filters show some perceptible
postaliasing and smoothing.

Figure 5 shows a ray-traced image of the test volume’s
isosurface " x y z 0 5.

Figure 5: The unsampled test signal.

6.2 Test image rendering

To demonstrate the behavior of the various filters, we
display isosurfaces of reconstructed test volumes. It is im-
portant that we show the exact shape of the isosurface, in-
cluding small irregularities that can be seen only with de-
tailed shading. This means we need a gradient that corre-
sponds exactly to the reconstructed density function. The
usual schemes for rendering isosurfaces (e. g., Lorensen and
Cline [13]) approximate the gradients using central differ-
ences at sample points and then interpolate those gradients;
the resulting estimate does not track small-scale changes in
the isosurface orientation.

Since our reconstructed density function is the convo-
lution of the samples with the reconstruction filter, the den-
sity gradient is the convolution of the samples with the gra-
dient of the filter. For any differentiable filterh, we can thus
obtain an exact formula for the gradient of the reconstructed
function,which can be evaluated at any point in the volume.

For rendering, we use a ray tracer that displays isosur-
faces of arbitrary functions by using a root-finding algo-
rithm to locate the first crossing of the isosurface level along
each ray.

(1,0)
= B-Spline

0.2 0.4 0.6 0.8 1

Smoothing

0

0.1

Postaliasing

(0,0)
= Catmull-Rom

Trilinear
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r=4.28

r=3.79

(0,1)

(0,0.5)

pass-band 
optimal
filters

5-pt

7-pt9-pt

0.08

0.06

0.04

0.02

Figure 6: Smoothing and postaliasing metrics.

7 Results

7.1 Smoothing and Postaliasing

Figure 6 shows the smoothing and postaliasingmetrics
for the trilinear filter, the family of cubic filters, a range of
windowed sincs, and three pass-band optimal filters. The
metrics for our ideal filter would be (0,0), although, as dis-
cussed in Section 3.3, some smoothing is usually required,
if only to combat overshoot.

Cubic Filters. This family is shown in the figure as a
10 by 10mesh. Themapping fromB-C space to smoothing-
postaliasing space is not one-to-one: the 1 1 corner of
the mesh is “folded” over. The B-spline smoothes the most
heavily, but has low postaliasing, while the Catmull-Rom
spline produces much less smoothing but has poor postal-
iasing properties. The images in Figures 9(a) and 9(b) sup-
port these measurements: the B-spline smoothes out the
large variations in the signal—thewaves get shallowerwith
increasing frequency—and the Catmull-Rom preserves the
depth of the waves at the cost of aliasing, which shows up
as scalloped crests.

According to our metrics, the filters along the fold
should be best. However, Figure 9(c) shows the test volume
reconstructed using one such filter (B 0 5,C 0 85). We
can see that, while the overall geometry is reproduced quite
faithfully, the surface has a dimpled texture, due to near-
sample-frequency ripple. The ripples, although of low am-
plitude, are of high frequency, and so produce large local
variations in gradient, and therefore in shading. It is per-
haps a limitation of our postaliasing metric that it weights
leakage at all frequencies equally.

Our experience corroborates the space-domain conver-
gence analysis of Mitchell and Netravali [15], which sug-
gests that filters along the line 2C B 1 (which includes
Catmull-Rom and B-splines as extreme cases) are among
the best: we find that these filters have negligible near-
sample-frequency ripple. But we see no reason in general
to prefer any particular filter along that line a priori, since
wemust always settle for a tradeoff between smoothing and
postaliasing.

(a) B-spline (b) Catmull-Rom

(c) Cubic (B 0 5, C 0 85) (d) Trilinear

(e) Cubic (B 0 26,C 0 1) (f) Windowed sinc (r 4 8)

Figure 9: Isosurface images of the test signal reconstructed using various filters.

(a) B-spline (b) Catmull-Rom

(c) Cubic (B 0 5, C 0 85) (d) Trilinear

(e) Cubic (B 0 26,C 0 1) (f) Windowed sinc (r 4 8)

Figure 9: Isosurface images of the test signal reconstructed using various filters.

(a) B-spline (b) Catmull-Rom

(c) Cubic (B 0 5, C 0 85) (d) Trilinear

(e) Cubic (B 0 26,C 0 1) (f) Windowed sinc (r 4 8)

Figure 9: Isosurface images of the test signal reconstructed using various filters.
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Classification and shading

[Levoy 1988]
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n 

P (I) = ~__~Pi Pi (I) 

where n is the number of materials present in the volume, Pl is 

the percentage of material i in a given voxel, and Pi([) is the 

probability that material i has value 1. In the case of muscu- 

loskeletal CT, the distribution functions Pi (it) represent the x- 

ray absorption of each material, and are known a-priori. Once 

the individual distribution functions are known, the Bayesian 

estimate of the percentage of each material contained within a 

voxel of value I is given by: 

p i ( I ) -  ei(1) 

i__~Pj ([) 

Note that when the classification is a function of only a single 

intensity volume, as in this case, the classification can be per- 

formed by using table lookup on the input values. Further- 

more, if no more then two material distributions overlap, the 

percentage of each material varies linearly between their 

peaks. This is roughly the case with musculoskeletal CT, 

because bone and fat intensity distributions rarely overlap, so 

voxels are either linear combinations of fat and soft-tissue or 

soft-tissue and bone. Figure 2 shows a hypothetical histogram, 

material distributions, and resulting classification functions. 

The first step in Figure 1 shows an actual classification of a CT 

data set. 

Maximum likelihood classifiers can be built that handle 

more than one input data volume; these are like the multispec- 

tral classification algorithms commonly employed in remote 

sensing and statistical pattern recognition. However, max- 

imum likelihood methods will not always work well. In per- 

forming the musculoskeletal classification described above, 

voxels are never classified as being a mixture of air and bone 

since the soft-tissue distribution lies between the air and bone 

distributions. However, within nasal passages mixtures of air 

and bone are common. Using knowledge about what combina- 

tions of materials may potentially mix will improve the 

classification and hence the estimates of the material percen- 

tages. Adaptive classification algorithms which take advantage 

of local neighborhood characteristics (Tom, 1985), multi- 

spectral mixture analysis (Adams, 1986), or probabilistic relax- 

ation algorithms (Zucker, 1976) can all be used with the 

volume rendering algorithm. However, it should be stressed 

again, that only probabilistic classification algorithms should 

be used, since binary classification algorithms will introduce 

artifacts in the subsequent renderings. 

Once material percentage volumes are available, volumes 

corresponding to other properties can be easily computed. As 

an example, consider creating a RGB~ color-opacity volume. 

In this paper, a piece of colored material is modeled with four 

coordinates: R ,  G,  B are the intensities of red, green and blue 

light, and ~x is the opacity. An t~=l implies that the material is 

completely opaque, and t~-----0 implies that it is completely tran- 

sparent. (A more accurate model of transparency would use 

three color components because a real material will filter red, 

green and blue light differently.) The color of a mixture of 

materials is given by 

C = ~=~ Pi Ci 

where Ci = (~iRi,(tiGi,~iBi,~i) is the color associated with 

material i .  Note that in this representation, the colors are 

# 
Original histogram 

# Constituent's distributions 
/ ~  soft tissue 
a i r ~ , ~ ' ~ b  °n k 

I Material assignme~nts 100% - - ~  
• soft tissu bone 

0 %' 
CT Number~-4~ 

Figure 2. CT Classification 

premultiplied by their opacities. This representation of colors 

and the advantages of premultiplying colors by opacity are is 

discussed in (Porter, 1984). 

Matting 

After the volume is classified, it is often helpful to 

remove sections or lessen the presence of certain regions or 

materials. Matte volumes are created for these operations. 

Each voxel of a matte is a scalar fraction, which defines the 

percentage of the voxel contained by the matte. Matte 

volumes can be simple geometric shapes, such as wedges or 

halfplanes, or regions computed from other volumes, such as 

an air matte volume which is the region not contained in any 

material percentage volumes. 

Matting operations correspond roughly to fuzzy set opera- 

tions. This allows spatial set operations to be performed on 

volumes. An example of this is merging multiple volumes into 

a single volume using union. Another example is to carve a 

shape out of a solid. One of the most common uses of matte 

volumes is to perform cut-aways; another is to remove regions 

where the data is unreliable or uninteresting. Finally, since 

matte values are fractional, they can be used to lower the per- 

centage of material in a region, or to change the material pro- 

perties in different regions. Depth cueing is done by matting a 

ramp in z with the final shaded color volume before projection. 

This has the effect of making near colors brighter than the far 

colors. 
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perpendicular to an isosurface through that position, we use the gra-
dient vector as a way of finding the direction which passes perpen-
dicularly through the object boundary. Even though isosurfaces do
not always conform to the local shape of the underlying object, if
we average over the whole volume, the gradient vector does tend to
point perpendicular to the object boundary. We rely on the statisti-
cal properties of the histogram to provide the overall picture of the
boundary characteristics.

The directional derivative of a scalar field along a vector ,
denoted , is the derivative of as one moves along a straight
path in the direction. This paper studies and its derivatives as
one cuts directly through the object boundary — moving along the
gradient direction — in order to create an opacity function. Be-
cause the direction along which we are computing the directional
derivative is always that of the gradient, we employ a mild abuse of
notation, using and to signify the first and second directional
derivative along the gradient direction, even though these would

be more properly denoted by and , where is the

gradient direction. We treat as if it were a function of just one
variable, keeping in mind that the axis along which we analyze

always follows , which constantly changes orientation depend-
ing on position. Fig. 3 shows how the gradient direction changes
with position to stay normal to the isosurfaces of a simple object.

(a) (b) Isosurfaces of (c)

Figure 3: is always normal to ’s isosurfaces.

Fig. 4 analyzes one segment of the cross-section of this same
object. Shown are plots of the data value and the first and second
derivatives as one moves across the boundary. Because of band-
limiting, the measured boundary is spread over a range of positions,
but an exact location for the boundary can be defined with either
the maximum in , or the zero-crossing in . Indeed, two edge
detectors common in computer vision, Canny [4] and Marr-Hildreth
[14], use the and criteria, respectively, to find edges.

Figure 4: Measuring , , and across boundary.

3.3 Relationship Between , , and

As our goal is to find functions of data value which highlight bound-
ary regions, our problem is rather different than that addressed
by edge detectors. Because the opacity function will be applied
throughout the volume irrespective of position, we must locate the
boundary not in the spatial domain, but in the range of data values.
In contrast, edge detectors locate boundaries in the spatial domain.
Yet, we still want to borrow from computer vision the notion that
boundaries are somehow associated with a maximum in and/or
a zero-crossing in . To see how this is possible, consider just the
relationship between and . As both of these are functions of
position, they can be plotted with a three-dimensional graph, as in
Fig. 5. The three-dimensional curve can be projected downward to
form the plot of data value versus position, and projected to the right
to show first derivative versus position. Projecting the curve along
the position axis, however, eliminates the position information, and
reveals the relationship between data value and first derivative. Be-
cause the data value increases monotonically, there is a (non-linear)
one-to-one relationship between position and data value, so the first
derivative , which had been a function of position , can also
be expressed as a function of data value . This is what the third
projection in Fig. 5 depicts.

Figure 5: , and position .

The same projections can be done for data value and its second
derivative, as seen in Fig. 6. Projecting the curve downward or to
the right produces the graphs of data value or second derivative ver-
sus position (first seen in Fig. 4), while projecting along the posi-
tion axis reveals the relationship between data value and its second
derivative.

Finally, having “projected out” position information, one can
make a three-dimensional graph of the first and second derivatives
as functions of data value, as seen in Fig. 7. The significance of this
curve is that it provides a basis for automatically generating opacity
functions. If a three dimensional record of the relationship between
, and for a given dataset contains curves of the type shown
in Fig. 7, we can assume that they are manifestations of boundaries
in the volume. With a tool to detect those curves and their posi-
tion, one could generate an opacity function which makes the data
values corresponding to the middle of the boundary (indicated with
cross-hairs in Fig. 7) the most opaque, and the resulting rendering
should show the detected boundaries. Short of that, one could use a
measure which responds to some specific feature of the curve (say,
the zero crossing in ) and base an opacity function on that. This
is what the current paper seeks to do.

perpendicular to an isosurface through that position, we use the gra-
dient vector as a way of finding the direction which passes perpen-
dicularly through the object boundary. Even though isosurfaces do
not always conform to the local shape of the underlying object, if
we average over the whole volume, the gradient vector does tend to
point perpendicular to the object boundary. We rely on the statisti-
cal properties of the histogram to provide the overall picture of the
boundary characteristics.

The directional derivative of a scalar field along a vector ,
denoted , is the derivative of as one moves along a straight
path in the direction. This paper studies and its derivatives as
one cuts directly through the object boundary — moving along the
gradient direction — in order to create an opacity function. Be-
cause the direction along which we are computing the directional
derivative is always that of the gradient, we employ a mild abuse of
notation, using and to signify the first and second directional
derivative along the gradient direction, even though these would

be more properly denoted by and , where is the

gradient direction. We treat as if it were a function of just one
variable, keeping in mind that the axis along which we analyze

always follows , which constantly changes orientation depend-
ing on position. Fig. 3 shows how the gradient direction changes
with position to stay normal to the isosurfaces of a simple object.

(a) (b) Isosurfaces of (c)

Figure 3: is always normal to ’s isosurfaces.

Fig. 4 analyzes one segment of the cross-section of this same
object. Shown are plots of the data value and the first and second
derivatives as one moves across the boundary. Because of band-
limiting, the measured boundary is spread over a range of positions,
but an exact location for the boundary can be defined with either
the maximum in , or the zero-crossing in . Indeed, two edge
detectors common in computer vision, Canny [4] and Marr-Hildreth
[14], use the and criteria, respectively, to find edges.

Figure 4: Measuring , , and across boundary.

3.3 Relationship Between , , and

As our goal is to find functions of data value which highlight bound-
ary regions, our problem is rather different than that addressed
by edge detectors. Because the opacity function will be applied
throughout the volume irrespective of position, we must locate the
boundary not in the spatial domain, but in the range of data values.
In contrast, edge detectors locate boundaries in the spatial domain.
Yet, we still want to borrow from computer vision the notion that
boundaries are somehow associated with a maximum in and/or
a zero-crossing in . To see how this is possible, consider just the
relationship between and . As both of these are functions of
position, they can be plotted with a three-dimensional graph, as in
Fig. 5. The three-dimensional curve can be projected downward to
form the plot of data value versus position, and projected to the right
to show first derivative versus position. Projecting the curve along
the position axis, however, eliminates the position information, and
reveals the relationship between data value and first derivative. Be-
cause the data value increases monotonically, there is a (non-linear)
one-to-one relationship between position and data value, so the first
derivative , which had been a function of position , can also
be expressed as a function of data value . This is what the third
projection in Fig. 5 depicts.

Figure 5: , and position .

The same projections can be done for data value and its second
derivative, as seen in Fig. 6. Projecting the curve downward or to
the right produces the graphs of data value or second derivative ver-
sus position (first seen in Fig. 4), while projecting along the posi-
tion axis reveals the relationship between data value and its second
derivative.

Finally, having “projected out” position information, one can
make a three-dimensional graph of the first and second derivatives
as functions of data value, as seen in Fig. 7. The significance of this
curve is that it provides a basis for automatically generating opacity
functions. If a three dimensional record of the relationship between
, and for a given dataset contains curves of the type shown
in Fig. 7, we can assume that they are manifestations of boundaries
in the volume. With a tool to detect those curves and their posi-
tion, one could generate an opacity function which makes the data
values corresponding to the middle of the boundary (indicated with
cross-hairs in Fig. 7) the most opaque, and the resulting rendering
should show the detected boundaries. Short of that, one could use a
measure which responds to some specific feature of the curve (say,
the zero crossing in ) and base an opacity function on that. This
is what the current paper seeks to do.

[K
in

dl
m

an
n 

& 
D

ur
ki

n 
19

98
]



perpendicular to an isosurface through that position, we use the gra-
dient vector as a way of finding the direction which passes perpen-
dicularly through the object boundary. Even though isosurfaces do
not always conform to the local shape of the underlying object, if
we average over the whole volume, the gradient vector does tend to
point perpendicular to the object boundary. We rely on the statisti-
cal properties of the histogram to provide the overall picture of the
boundary characteristics.

The directional derivative of a scalar field along a vector ,
denoted , is the derivative of as one moves along a straight
path in the direction. This paper studies and its derivatives as
one cuts directly through the object boundary — moving along the
gradient direction — in order to create an opacity function. Be-
cause the direction along which we are computing the directional
derivative is always that of the gradient, we employ a mild abuse of
notation, using and to signify the first and second directional
derivative along the gradient direction, even though these would

be more properly denoted by and , where is the

gradient direction. We treat as if it were a function of just one
variable, keeping in mind that the axis along which we analyze

always follows , which constantly changes orientation depend-
ing on position. Fig. 3 shows how the gradient direction changes
with position to stay normal to the isosurfaces of a simple object.

(a) (b) Isosurfaces of (c)

Figure 3: is always normal to ’s isosurfaces.

Fig. 4 analyzes one segment of the cross-section of this same
object. Shown are plots of the data value and the first and second
derivatives as one moves across the boundary. Because of band-
limiting, the measured boundary is spread over a range of positions,
but an exact location for the boundary can be defined with either
the maximum in , or the zero-crossing in . Indeed, two edge
detectors common in computer vision, Canny [4] and Marr-Hildreth
[14], use the and criteria, respectively, to find edges.

Figure 4: Measuring , , and across boundary.

3.3 Relationship Between , , and

As our goal is to find functions of data value which highlight bound-
ary regions, our problem is rather different than that addressed
by edge detectors. Because the opacity function will be applied
throughout the volume irrespective of position, we must locate the
boundary not in the spatial domain, but in the range of data values.
In contrast, edge detectors locate boundaries in the spatial domain.
Yet, we still want to borrow from computer vision the notion that
boundaries are somehow associated with a maximum in and/or
a zero-crossing in . To see how this is possible, consider just the
relationship between and . As both of these are functions of
position, they can be plotted with a three-dimensional graph, as in
Fig. 5. The three-dimensional curve can be projected downward to
form the plot of data value versus position, and projected to the right
to show first derivative versus position. Projecting the curve along
the position axis, however, eliminates the position information, and
reveals the relationship between data value and first derivative. Be-
cause the data value increases monotonically, there is a (non-linear)
one-to-one relationship between position and data value, so the first
derivative , which had been a function of position , can also
be expressed as a function of data value . This is what the third
projection in Fig. 5 depicts.

Figure 5: , and position .

The same projections can be done for data value and its second
derivative, as seen in Fig. 6. Projecting the curve downward or to
the right produces the graphs of data value or second derivative ver-
sus position (first seen in Fig. 4), while projecting along the posi-
tion axis reveals the relationship between data value and its second
derivative.

Finally, having “projected out” position information, one can
make a three-dimensional graph of the first and second derivatives
as functions of data value, as seen in Fig. 7. The significance of this
curve is that it provides a basis for automatically generating opacity
functions. If a three dimensional record of the relationship between
, and for a given dataset contains curves of the type shown
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4 The Histogram Volume

4.1 Histogram Volume Structure

To measure the relationship between the data value and its deriva-
tives described in the last section, we use a three-dimensional his-
togram we term a histogram volume. There is one axis for each of
the three quantities , , and , and each axis is divided into some
number of (one-dimensional) bins, causing the interior volume to
be divided into a three-dimensional array of bins. The histogram
volume has two defining characteristics:

1. Each bin in the histogram volume represents the combination
of a small range of values in each of the three variables , ,
and .

2. The value stored in each bin signifies the number of voxels in
the original volume within that same combination of ranges
of these three variables.

4.2 Histogram Volume Creation

Fig. 7 illustrated the position-independent relationship between ,
, and that characterized an ideal boundary. To find that rela-

tionship, however, we afforded ourselves the luxury of first know-

ing where the boundary was in the idealized dataset. For instance,
Fig. 4 was produced with knowledge of where to place a path so
as to cross through the boundary. In the case of real volume data,
however, the positions of the boundaries are not known, but the
same relationship between , and needs to be revealed by
some measurement technique.

(a) Continuous linear sampling

(b) Dense linear sampling

(c) Sampling at gridpoints

Figure 8: Sampling the boundary: from continuous to discrete.

It is sufficient to measure , , and at each point of a uniform
lattice. Fig. 8(a) shows a boundary being sampled continuously to
produce smooth graphs of and versus . In Fig. 8(b), the
sampling is along the same path, but is now discrete. The smooth
graphs have been replaced by scatterplots, but the sequence of mea-
surements traces out the same curves as before, indicating that dis-
crete sampling and the resulting scatterplots are sufficient to illu-
minate the important relationships between and its derivatives.
Finally, in Fig. 8(c), the boundary is sampled everywhere on a uni-
form grid. Though now the points are distributed differently —
many more hits have accumulated along where and are near
zero — the scatterplots trace out the save curves as before. By sam-
pling everywhere, we no longer require knowledge of boundary lo-
cation, and the “global” derivative characteristics of the boundary
have been measured. This is precisely the sort of information rele-
vant to opacity function generation.

The approach taken in this paper is to measure and its di-
rectional derivatives exactly once per voxel, at the original sample
points of the dataset. One might be concerned that sampling merely
at the original data points is not a sufficient sampling density to pro-
duce the curves seen in Figs. 7 and 8. However, with real volume
data this will not be a problem, since the band-limiting in data ac-
quisition assures there will always be some blurring, and since the
boundaries of real objects tend to assume a variety of positions and
orientations relative to the sampling grid.
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the gradient magnitude and second derivative as a function
of data value. This shows the curves as they appear in a
joint histogram or a transfer function.

3.2 Multivariate Data

Multivariate data contains, at each sample point, multiple
scalar values that represent different simulated or measured
quantities. Multivariate data can come from numerical
simulations which calculate a list of quantities at each
timestep or from medical scanning modalities such as MRI,
which can measure a variety of tissue characteristics or
from a combination of different scanning modalities, such
as MRI, CT, and PET. Multidimensional transfer functions
are an obvious choice for volume visualization of multi-
variate data since we can assign different data values to the
different axes of the transfer function. It is often the case
that a feature of interest in these data sets cannot be
properly classified using any single variable by itself. In
addition, we can compute a kind of first derivative in the
multivariate data in order to create more information about
local structure. As with scalar data, the use of a first
derivative measure as one axis of the multidimensional
transfer function can increase the specificity with which we
can isolate and visualize different features in the data.

One example of data that benefits from multidimen-
sional transfer functions is volumetric color data. A number
of volumetric color data sets are available, such as the
Visible Human Project’s RGB data. The process of acquiring
color data by cryosection is becoming common for the
investigation of anatomy and histology. In these data sets,
the differences in materials are expressed by their unique
spectral signature. A multidimensional transfer function is a
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Fig. 1. Material and boundary identification of the Chapel Hill CT Head
with data value alone (a) versus data value and gradient magnitude (f 0),
seen in (b). The basic materials captured by CT, air (A), soft tissue (B),
and bone (C) can be identified using a 1D transfer function as seen in
(a). One-dimensional transfer functions, however, cannot capture the
complex combinations of material boundaries; air and soft tissue
boundary (D), soft tissue and bone boundary (E), and air and bone
boundary (F) as seen in (b) and (c). (a) A 1D histogram. The black
region represents the number of data value occurrences on a linear
scale, the gray is on a log scale. The colored regions (A, B, C) identify
basic materials. (b) A log-scale 2D joint histogram. The lower image
shows the location of materials (A, B, C), and material boundaries (D, E,
F). (c) A volume rendering showing all of the materials and boundaries
identified above, except air (A), using a 2D transfer function.

Fig. 2. The frontal and maxillary sinuses of the Visible Male CT. While a
1D transfer function can show the sinuses along with the skin, it cannot
capture them in isolation. Only a higher dimensional transfer function, in
this case, a 2D transfer function using data value and gradient
magnitude, can uniquely classify them. (a) 1D transfer function. (b) 2D
transfer function.
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variables for multidimensional transfer functions, with their
own properties governing the choices for default settings.

While multidimensional transfer functions are quite
effective for visualizing material boundaries, we have also
found them to be useful for visualizing the materials
themselves. For instance, if we attempt to visualize the
dentin of the Human Tooth CT using a 1D transfer function,
we erroneously color the background/enamel boundary,
seen in Fig. 14a. The reason for this can be seen in Fig. 3a,
where the range of data values which define the back-
ground/enamel boundary overlap with the dentin’s data
values. We can easily correct this erroneous coloring with a
2D transfer function that only gives opacity to lower
gradient magnitudes. This can be seen in Fig. 14b.

A further benefit of dual-domain interaction is the ability
to create feature-specific multidimensional transfer func-
tions which would be extremely difficult to produce by
manual placement of classification widgets. If a feature can
be visualized in isolation with only a very small and
accurately placed classification widget, the best way to

place the widget is via dual-domain interaction. This is the
case for visualizing different soft tissues in CT data, such as
the white matter of the brain in the Visible Male CT, shown
in Fig. 15.

Dual-domain interaction has utility beyond setting
multidimensional transfer functions. Dual-domain interac-
tion also helps answer other questions about the limits of
direct volume rendering for displaying specific features in
the data. For example, the feedback in the transfer function
domain can show the user whether a certain feature of
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Fig. 12. The soft tissue/bone boundary of the Visible Male CT. It is
necessary to shear the triangular classification widget to follow the
center of this boundary.

Fig. 13. A default transfer function for scalar data applied to the Chapel
Hill CT. Hue varies along the data value axis and opacity varies along
the gradient magnitude axis. A clipping plane reveals internal structure
(right).

Fig. 14. The dentin of the Human Tooth CT. (a) shows that a 1D transfer
function, simulated by assigning opacity to data values regardless of
gradient magnitude, will erroneously color the background/enamel
boundary. A 2D transfer function, shown in (b), can avoid assigning
opacity to the range of gradient magnitudes that define this boundary.

Fig. 15. The brain of the Visible Male CT. The transfer functions were
created using dual-domain interaction. A detail region shows how small
the region that identifies this subtle feature is in the transfer function
domain.
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natural choice for visualizing this type of data. Opacity can
be assigned to different positions in the 3D RGB color space.
Fig. 5a shows a joint histogram of the RGB color data for the
Visible Male; regions of this space that correspond to
different tissues are identified. Regions (A) and (B)
correspond to the fatty tissues of the brain, white and gray
matter, as seen in Fig. 5b. In this visualization, the transition
between white and gray matter is intentionally left out to
better emphasize these materials and to demonstrate the
expressivity of the multidimensional transfer function.
Fig. 5c shows a visualization of the color values that
represent the muscle structure and connective tissues (C) of
the head and neck with the skin surface (D) given a small

amount of opacity for context. In both of these figures, a
slice of the original data is mapped to the surface of the
clipping plane for reference. Fig. 6 shows a visualization of
the kidney from the Visible Male RGB data.

Our choice of RGB for the transfer function axes is rather
arbitrary; it is simply the most direct use of the color data.
Other natural choices for color representation are the HSV
or HLS spaces, or a CIE colorimetric space, if calibration
data is available. Any color space is fine as long as it is
possible to convert to RGB for display. It is important to
note, however, that materials which are indistinguishable in
the RGB color space will also be indistinguishable in any
other color space. The choice of color space representation
for the transfer function should be made on the basis of ease
of use. Some color spaces, such as HSV, are better geared for
human navigation. Our experience, however, has shown
that tissue colors in cryosection are sometimes not what we
expect. This can be seen in Fig. 6, where the color in the
renal vein (E) is essentially black, rather than red as we
might expect blood to be. For this reason, our exploration of
this data set has been largely guided by probing and dual-
domain interaction, which are described in the next section.
We have also found it impractical to manipulate the transfer
function in the full 3D space that it defines. Instead, we only
manipulate the transfer function using two axes at a time.
The placement of classified regions is very similar to that
shown in Fig. 5a, where each classified region is repre-
sented as a projection onto two of the transfer function axes.

The kind of first derivative that we compute in multi-
variate data is based on previous work in color image
segmentation [8], [37], [7]. While the gradient magnitude in
scalar data represents the magnitude of local change at a
point, an analogous first derivative measure in multivariate
data captures the total amount of local change, across all the
data components. This derivative has proven useful in color
image segmentation because it allows a generalization of
gradient-based edge detection. In our system, we use this
first derivative measure as one axis in the multidimensional
transfer function in order to isolate and visualize different
regions of a multivariate volume according to the amount of
local change, analogous to our use of gradient magnitude
for scalar data.

If we represent the data set as a multivariate function
fðx; y; zÞ : IR3 ! IRm so that

fðx; y; zÞ ¼ f1ðx; y; zÞ; f2ðx; y; zÞ; $ $ $ ; fmðx; y; zÞð Þ;
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Fig. 3. Material and boundary identification of the human tooth CT with
data value and gradient magnitude (f 0), seen in (a), and data value and
second derivative (f 00), seen in (b). The background/dentin boundary (F)
cannot be adequately captured with data value and gradient magnitude
alone. (c) shows the results of a 2D transfer function designed to show
only the background/detin (F) and dentin/enamel boundaries (G). The
background/enamel (H) and dentin/pulp (E) boundaries are erroneously
colored. Adding the second derivative as a third axis to the transfer
function disambiguates the boundaries. (d) shows the results of a 3D
transfer function that gives lower opacity to nonzero second derivative
values.

Fig. 4. The behavior of primary data value (f), gradient magnitude (f 0),
and the second directional derivative (f 00) as a function of position (a)
and as a function of data value (b).
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