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These notes are an excerpt from an unpublished research report by Wenzel Jakob, and they closely follow
the style of presentation I used in class. This is the derivation behind the dipole model from Farrell et al.
[1] that is used by Jensen et al. [3].

1 Definitions and Fundamentals

In the following section, the integration of a vertor term is to be read as a vector of integrals.

Definition 1.1. The n-th moment of f on the unit sphere is defined as:

(µn[f ])i,j,k,... :=
∫
S2
ωiωjωk · · ·︸ ︷︷ ︸
n factors

f(ω) dω.

where f : S2 → R.

Lemma 1.2. Integrals of the form
∫ 2π

0

cosn(ϕ) sinm(ϕ) dϕ are zero when m+ n is odd. This will introduce

sparsity into higher-order moments of functions that are independent of the azimuth.

Proof. Let m,n ∈ N:∫ 2π

0

cos2m+1(ϕ) sin2n(ϕ) dϕ =
∫ 2π

0

cos2m(ϕ) cos(ϕ) sin2n(ϕ) dϕ

=
∫ 2π

0

(1− sin2(ϕ))m cos(ϕ) sin2n(ϕ) dϕ

=
∫ 0

0

(1− x2)mx2n dx = 0.

The other case is analogous.

Corollary 1.3. For any f that is independent of the azimuth when expressed in spherical coordinates:∫
S2
ωiωjf(ω) dω = 0 (i 6= j).

Lemma 1.4. The 1st moment of a constant-valued function f is zero.
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Proof. Suppose that f ≡ C ∈ R:

∫
S2
ωf(ω) dω =

∫ 2π

0

∫ π

0

C

cosϕ sin θ
sinϕ sin θ

cos θ

 sin θ dθ dϕ

= C

∫ 2π

0

π
2 cosϕ
π
2 sinϕ

0

 dϕ

= 0.

Lemma 1.5. The 0th moment of a linear functional (f(ω) = a · ω) is zero.

Proof. ∫
S2
a · ω dω =

∫
S2
axω1 + ayω2 + azω3

= ax

∫
S2
ω1 dω + ay

∫
S2
ω2 dω + az

∫
S2
ω3 dω

= 0.

Lemma 1.6. The 1st moment of a linear functional (f(ω) = a · ω) is
4π
3
a.

Proof. The components of
∫
S2 ω (a · ω) dω are:

∫
S2
wi (a · ω) dω =

3∑
j=1

aj

∫
S2
ωi ωj dω

Since
∫ π
0

sin2 θ cos θ dθ = 0 and
∫ 2π

0
sinϕ cosϕdϕ = 0, the summands with i 6= j will all be zero. Furthermore,

because in spherical coordinates ‖ω‖ is equal to one,

4π =
∫
S2

1 dω =
∫
S2
ω2

1 dω +
∫
S2
ω2

2 dω +
∫
S2
ω2

3 dω.

For reasons of symmetry, the summands have identical values:∫
S2
w2
i dω =

4π
3

(i = 1, 2, 3)

and thus ∫
S2
ω (a · ω) dω =

4π
3
a.

Lemma 1.7. The 0th moment of a quadratic form f(ω) = ωTAω is
4π
3

Tr(A).
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Proof. Similarly to before, symmetry causes most summands to vanish:∫
S2
ωT ·Aω dω =

∫
S2

n∑
i=1

ωi

n∑
j=1

aijωj dω

=
n∑
i=1

aii

∫
S2
ω2
i dω

=
4π
3

Tr(A)

Lemma 1.8. The 1st moment of a quadratic form f(ω) = ωTAω is zero.

Proof. The components of
∫
S2(ωT ·Aω)ω dω are:∫

S2
ωi

n∑
k=1

n∑
l=1

ωkaklωl dω = aii

∫
S2
ω3
i dω = 0.

Definition 1.9. (i) Radiant fluence is defined as the 0th moment of L while keeping x fixed:

φ(x) = µ0[L(x, ·)] =
∫
S2
L(x, ω) dω

(ii) Vector irradiance is defined as the 1st moment of L while keeping x fixed:

~E(x) = µ1[L(x, ·)] =
∫
S2
ωL(x, ω) dω

(iii) The isotropic phase function is defined as a function ρ : S2 × S2 → R, which additionally satisfies the
constraints

(a)
∫
S2
ρ(ω, ω′) dω′ = 1 ∀ω ∈ S2 (probability distribution)

(b) ρ(ω, ω′) = ρ(ω · ω′) (rotational symmetry)

(iv) g ∈ R is defined as the averaged forward scattering minus the backward scattering of ρ [2]:

g :=
∫
S2
ρ(ω, ω′)ω · ω′ dω′

Lemma 1.10. When fixing the incident direction of ρ to ω0 ∈ S2, its moments are:

(i) µ0[ρ(ω0, ·)] = 1.

(ii) µ1[ρ(ω0, ·)] = gω0 (ω0 ∈ S2).

Proof. (i) Follows directly from definition 1.9 (iii).

(ii) The vector ω0 can be extended to an ONB (ω0, u, v) of R3. Calculating µ1 in this space with w0 as a
fixed argument of ρ yields the first component∫

S2
ρ(ω0, ω

′) (ω0 · ω′) dω′ = g. (Definition 1.9 (iv))
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Partitioning the unit sphere into two hemispheres around u and −u will cause the two integral sum-
mands to have opposite signs due to the rotational symmetry:∫

S2
ρ(ω0, ω

′) (u · ω′) dω′ =
∫
H2(u)

ρ(ω0, ω
′) (u · ω′) dω′ +

∫
H2(−u)

ρ(ω0, ω
′) (u · ω′) dω′ = 0.

Analogous holds for v. Thus, µ1[ρ(ω0, ·)] = gω0.

2 Derivation of the Isotropic Diffusion Equation

We make the assumption that L is directionally smooth and well-approximated by a first-order expansion:

L(x, ω) :=
1

4π
φ(x) +

3
4π

ω · ~E(x).

The radiative transfer equation (RTE) is given by

(ω · ∇)L(x, ω) + σtL(x, ω) = σs

∫
S2
ρ(x, ω, ω′)L(x, ω′) dω′ +Q(x, ω). (1)

Substitution of the first-order expansion of L into the RTE results in:

(ω · ∇)
(

1
4π
φ(x) +

3
4π

ω · ~E(x)
)

+ σt

(
1

4π
φ(x) +

3
4π

ω · ~E(x)
)

= (2)

σs

∫
S2
ρ(x, ω, ω′)

(
1

4π
φ(x) +

3
4π

ω′ · ~E(x)
)

dω′ +Q(x, ω).

With the restricted representation of L, we can no longer expect to be able to solve the RTE exactly. Instead,
we will project both sides of the equation into this reduced space and search for equality amongst the 0th

and 1st -order coefficients.

Left hand side (0th order)

µ0

[
(ω · ∇)

(
1

4π
φ(x) +

3
4π

ω · ~E(x)
)

+ σt

(
1

4π
φ(x) +

3
4π

ω · ~E(x)
)]

=
1

4π

∫
S2
ω · ∇φ(x) dω︸ ︷︷ ︸
= 0 (1.5)

+
3

4π

∫
S2
ω · ∇( ~E(x) · ω) dω︸ ︷︷ ︸

= 4π
3 Tr(∇~E))= 4π

3 div ~E (1.7)

+
σt
4π

∫
S2
φ(x) dω︸ ︷︷ ︸

= 4πφ(x)

+
3σt
4π

∫
S2
ω · ~E(x) dω︸ ︷︷ ︸
= 0 (1.5)

= div ~E(x) + σt φ(x). (3)

Right hand side (0th order)

µ0

[
σs

∫
S2
ρ(x, ω, ω′)

(
1

4π
φ(x) +

3
4π

ω′ · ~E(x)
)

dω′ +Q(x, ω)
]

=
σs
4π

∫
S2

∫
S2
ρ(x, ω, ω′)φ(x) dω dω′︸ ︷︷ ︸

= 4πφ(x) (φ const, (1.10 i))

+
3σs
4π

∫
S2

∫
S2
ρ(x, ω, ω′)ω′ · ~E(x) dω dω′︸ ︷︷ ︸

= 0 (E const, (1.10 ii), (1.5))

+Q0(x)

= σsφ(x) +Q0(x) (4)

where Q0(x) := µ0[Q(x, ·)].
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Resulting equation

The resulting equation intuitively expresses that the divergence of the vector irradiance field ~E is positive
in the vicinity of sources (Q0 > 0) and negative in the presence of absorption.

div ~E(x) + σt φ(x) = σsφ(x) +Q0(x)

⇔ div ~E(x) = −σaφ(x) +Q0(x) (5)

Left hand side (1st order)

µ1

[
(ω · ∇)

(
1

4π
φ(x) +

3
4π

ω · ~E(x)
)

+ σt

(
1

4π
φ(x) +

3
4π

ω · ~E(x)
)]

=
1

4π

∫
S2
ω(ω · ∇φ(x)) dω︸ ︷︷ ︸
= 4π

3 ∇φ(x) (1.6)

+
3

4π

∫
S2
ω(ωT∇ ~E(x)ω) dω︸ ︷︷ ︸

= 0 (1.8)

+
σt
4π

∫
S2
ωφ(x) dω︸ ︷︷ ︸

= 0 (1.4)

+
3σt
4π

∫
S2
ω(ω · ~E(x)) dω︸ ︷︷ ︸

= 4π
3
~E(x) (1.6)

=
1
3
∇φ(x) + σt ~E(x) (6)

Right hand side (1st order)

µ1

[
σs

∫
S2
ρ(x, ω, ω′)

(
1

4π
φ(x) +

3
4π

ω′ · ~E(x)
)

dω′ +Q(x, ω)
]

=
σs
4π

∫
S2

∫
S2
ωρ(x, ω, ω′)φ(x) dω dω′︸ ︷︷ ︸

= 0 (φ const, (1.10 ii), (1.5))

+
3σs
4π

∫
S2

∫
S2
ωρ(x, ω, ω′)ω′ · ~E(x) dω dω′︸ ︷︷ ︸

= g 4π
3
~E(x) (rearrange, (1.10 ii), (1.6))

+Q1(x)

= gσs ~E(x) +Q1(x) (7)

where Q1(x) := µ1[Q(x, ·)].

Resulting equation

The 1st -order equation can be re-written as follows:

1
3
∇φ(x) + σt ~E(x) = gσs ~E(x) +Q1(x)

⇔ 1
3
∇φ(x) = (gσs − σt) ~E(x) +Q1(x)

⇔ 1
3
∇φ(x) = − (σa + (1− g)σs)︸ ︷︷ ︸

=:σt′

~E(x) +Q1(x)

⇔ ∇φ(x) = −3σt′ ~E(x) + 3Q1(x) (8)

where σt′ = σa + σs′ and σs′ = (1− g)σs are the reduced transport and scattering coefficients, respectively.

Putting it together

Solving (8) for ~E(x) results in
~E(x) =

1
σt′

Q1(x)− 1
3σt′
∇φ(x),
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which can be substituted into (5):

div
(

1
σt′

Q1(x)− 1
3σt′
∇φ(x)

)
= −σaφ(x) +Q0(x)

⇔ 1
σt′

divQ1(x)− 1
3σt′
∇2φ(x) = −σaφ(x) +Q0(x)

⇔ D∇2φ(x) = σaφ(x)−Q0(x) + 3D divQ1(x) (9)

where D =
1

3σt′
.
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