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Using Monte Carlo integration is a good, easy way to get correct solutions to the radiative trans-
fer equation.  It is not fast (at least not as naïvely implemented), especially for inhomogeneous or 
highly scattering media, but it is easy to get the right answer (plus random noise) for complex 
cases where there pretty much exists no other way to get an artifact-free solution.

Deriving the path tracing algorithm pretty much boils down to applying the Monte Carlo integra-
tion framework to the integral form of the volume rendering equation that we derived in the radia-
tive transport lectures.  As usual, the key to developing correct algorithms is to carefully write 
down the integrals involved and construct the Monte Carlo estimators systematically.

The integral form of the equation we need to solve, in the notation I’ve been using in lecture, is:

The MC approach is to identify the integrand, choose a point from a suitable pdf, and compute 
the ratio:




Since we will usually choose x′ first, then choose ω′ conditioned on that choice, we can write this 
as a nested estimator that estimates the ray integral using an estimate for the scattering integral:




Let’s apply this first in some special cases.  First we will look at the case for homogeneous, gray 
(wavelength-independent) media, for which is much easier to get a working implementation.

1. Emission only

Here τ(x, x′) = 1, and σs = σa = 0.  The integral is just






If we use uniform sampling with respect to distance along the ray, we have the estimator:




If the emission is homogeneous, then the answer is simple: ε‖x – y‖.  The estimator is constant, 
because p is proportional to f—this is “perfect” importance sampling, causing a zero-variance 
estimator.  (Of course, it also requires having the answer in closed form in the first place!)

2. Homogeneous, absorption only.

Here ε = σs = 0, and τ(x, y) = exp(– σa‖x – y‖).

Since there is no scattering or emission, the integral along the line goes away and we are left with 
the simple answer:


 L(x, ω) = τ(x, y) Le(y, ω).

There’s no integral, so there’s no Monte Carlo.

3. Emission + homogeneous absorption.

This is the first case where things become nontrivial.  Here σs = 0 so the remaining terms are:


 .

For the integral,




and for uniform sampling


 .

This will work, but depending on the density of the medium, it can be mighty inefficient.  (Exer-
cise: sketch g as a function of arc length along the ray.  What happens to the variance as the me-
dium becomes denser?)  Once there is attenuation, uniform sampling is no longer a good strategy, 
but a very simple importance sampling strategy is available: we can importance sample the at-
tenuation.



Attenuation in the homogeneous medium is τ(s) = exp(–σt s) where s is arc length along the ray.  
We would like to find a pdf p(s) that is proportional to τ(s).  To make it a pdf we just need to nor-
malize it.  The normalization depends upon the domain over which we normalize it—let me start 
by assuming the ray never exits the medium, so the domain of integration is [0, ∞].  Normalizing 
τ to make a pdf:



p(s) =

τ(s)∫ ∞
0 τ(t)dt

=
exp(−σt s)

[−exp(−σt t)/σt ]∞t=0
= σt exp(−σt s)

Then, integrating p from 0 to s we obtain P(s), the cumulative distribution function (cdf):



P(s) =

∫ s

0
p(s′)ds′ =

[
−exp(−σt s′)

]s
0 = 1− exp(−σt s)

Recall the procedure for choosing a sample according to p is to take a random number ξ that is 
uniform over the interval [0,1] and solve P(s) = ξ.  In this case that leads to




ξ = 1− exp(−σt s)

s =− ln(1−ξ )
σt

or equiv: s =− lnξ/σt

(since 1 – ξ has the same distribution as ξ.)

Using this pdf leads to the estimator:




This will perform a lot better than uniform random sampling in relatively dense media, and be-
cause it makes the estimator so simple to compute, it is an elegant choice.  The procedure looks 
like:

function radiance_estimator(x, ω):
        ξ = rand()
        s = –ln ξ / σt 
        return ε(x – sω) / σt

Of course when the medium doesn’t continue indefinitely along the ray, we’d like to choose a 
point according to τ(s) but restricted an interval [0, smax].  This is an easy generalization of the 
previous result (Exercise: The difference is in the normalization factor.  Work it out.) but isn’t 
quite so elegant.  Since, if the ray ends somewhere, we also need to include the radiance from 
behind the medium, a simple trick is to generate s and then compare it with smax.  The probability 
that s > smax is 1 – P(smax), which is exp(–σt smax): exactly the attenuation that needs to be applied 
to the radiance from behind the medium.  So if we just return this background radiance whenever 
we attempt to choose a point past the end, the expected value is correct, leading to the following 
tweaked procedure:



function radiance_estimator(x, ω):
        smax, L0 = trace_ray()
        ξ = rand()
        s = –ln ξ / σt 
        if s < smax then
            return ε(x – sω) / σt 
        else
            return L0

Another way to interpret the sampling procedure is that we select a random attenuation ξ and then 
find the distance s for which τ(s) = ξ. 

4. Emission + (inhomogeneous) absorption

In this situation the integral to be computed is still:



L(x,ω) =

∫ x

y
τ(x′,x)ε(x′)dx′

except this time, when we open the black box called τ, we find:



L(x,ω) =

∫ x

y
exp

(
−

∫ x

x′
σt

)
ε(x′)dx′

We can approach this using the same importance sampling scheme as above, but it is no longer so 
simple to compute the attenuation.  Instead of just evaluating an exponential, we have to numeri-
cally integrate the spatially varying attenuation coefficient along the ray.  Usually the attenuation 
integral is computed using some very simple quadrature rule—for example, the trapezoid rule, or 
even just the Riemann sum—on a regularly spaced set of samples along the ray.  Establishing a 
suitable spacing requires knowing something about how fast the attenuation coefficient can vary 
in the volume.

So assuming we have some scheme for computing the integral, we can make an estimator from it:




but again, it is crucial to importance sample, which no longer can be done using the simple com-
putation for homogeneous media.  Setting p to be proportional to τ as before is possible, but leads 
to a messy expression for P.  However, generalizing the “find where attenuation is ξ” procedure is 
simple.  We need to compute the distance at which τ = ξ (for a uniform random ξ), which can be 
done by modifying the numerical integrator so that it marches along the ray from the starting 
point, accumulating attenuation, until it just crosses ξ, then interpolates to find the sample point.

A simple Riemann integration procedure to find the attenuation between 0 and s is

function attenuation(smax, h)
        T = 0



        for (s = 0; s < smax; s += h)
                f = σt(s)
                T += hf
        T –= (s – smax) f
        return exp(–T)

To solve for τ(s) = ξ, just alter the stopping condition:

function find_attenuation(τ0, τ1, s0, h)
        T = ln(τ0)
        T1 = ln(τ1)
        for (s = s0; T < T1; s += h)
                f = σt(s)
                T += hf
        s –= (T – T1) / f
        return s

Of course these routines can be improved without much extra complexity by using the trapezoid 
rule.

The pdf that results from this procedure is







(Note here that dτ/dt = dξ/dt.)  If we use this pdf for importance sampling, the estimator becomes:




This all leads to the following algorithm for sampling an inhomogeneous medium:

function radiance_estimator(x, ω):
        smax, L0 = trace_ray()
        ξ = rand()
        s = find_attenuation(ξ, 0, h)
        if s < smax then
            return ε(x – sω) / σt(x – sω)
        else
            return L0



The disappointing thing is that we can’t just plug in a Monte Carlo estimator for the attenuation 
integral.  If it was true that E{exp(X)} = exp(E{X}) then we’d be in good shape—but sadly it is 
not.  This means that the only thing we can do is put in a sufficiently accurate numerical estimate 
of the integral: we can’t count on statistical averaging to let us use a very noisy estimate.

We also can’t generate an individual sample of s very quickly—we have to integrate along the ray 
from the eye to the sample point.  This means that if we are planning to take many samples along 
the ray (which, of course, we will need to do), it would be terribly inefficient to handle them in-
dependently—in fact, it would be quadratic in the number of samples required.

To generate samples for many values of ξ together, let’s assume that we have the list of random 
numbers ξ0, …, ξ(n–1) in hand a priori, and that they are sorted so that ξ0 < ξ1 < … < ξ(n–1).  To 
generate the many samples all at once, we can call the integration procedure multiple times, each 
time picking up from where it left off; you’ll note I added the arguments τ and s0 so that this is 
easy to do:

function radiance_estimator(x, ω, ξ-list):
        smax, L0 = trace_ray()
        S = 0
        n = ξ-list.length
        for (i = 0; i < n; i++)
            ξ = ξ-list[i]
            s = find_attenuation(ξ, s, smax, h)
            if s < smax then
                S += ε(x – sω) / σt(x – sω)
            else
                break
        return (S + (n – i)L0) / n

(I hope this pseudocode is correct, but as it wasn’t actually transcribed from working code there is 
some chance of bugs.)  Here I am giving the samples that fall past smax (all n–i of them) the value 
L0 in the average.

Note that it is easy to perform stratified sampling on the ray integral: you just use stratified ran-
dom values for the ξi, for instance by splitting the interval up into n pieces and choosing one ran-
dom number in each one:

function generate_ξs(n):
        for (i = 0; i < n; i++)
            ξs[i]  = (i + rand()) / n
        return ξs

This is easy to do—in fact, easier than generating a sorted list of independent random num-
bers—and will perform much better.

Another way to look at this, which makes a lot of sense if evaluating ε is cheap, is that we should 
just use enough samples that the emission is lost.



5. Introducing the scattering term

We now know how to handle absorption and emission in the general case.  The remaining issue is 
how to compute scattering.  As we’ve observed before, outscattering behaves exactly like absorp-
tion, as far as attenuation is concerned.  Similarly, inscattering behaves exactly like emission, as 
far as the integral along the ray is concerned.  So we can use the method from the previous sec-
tion but modify the emission by adding a Monte Carlo estimator for the scattering integral.

Estimating the scattering integral in a volume is just like estimating the reflection integral at a 
surface.  It is an integral over the sphere, and we will choose directions to sample, thinking of 
them as points on the sphere.




The first thing to try is importance sampling by the phase function.  (This means that whenever 
we propose a particular phase function, we also need to come up with a procedure for sampling it.  
There is a very simple procedure available for Henyey-Greenstein, the most popular phase func-
tion model out there.)  Remember the phase function is normalized to be a probability distribution 
already, so in this case p(ω′) = fp(x′, ω, ω′).  Then the estimator is







So all we need to do is trace a recursive ray to estimate L(x′, ω′) and the process becomes:

1. Choose ξ in [0, 1] and find the point x′ on the ray for which τ(x, x′) = ξ.

2. Choose ω′ according to the phase function.

3. Recursively estimate L(x′, ω′) and compute the estimator (ε(x′, ω) + σs(x′) L(x′, ω′)) / σt(x′).

That is, we simply replace the statement starting S += … by the following:


 ω′ = sample_phase_function()

 Ls = radiance_estimator(x – sω, ω′, new_ξ_list())

 S += (ε(x – sω) + σs Ls) / σt(x – sω)

Doing this leads to a path tracing algorithm very similar to a brute-force surface path tracer.  Add-
ing luminaire sampling, multiple importance sampling, and Russian Roulette all requires straight-
forward generalizations of the methods used for surfaces.


