
Torrent Crawler: a tool for collecting
information from BitTorrent networks

Yeounoh Chung

1. Abstract

BitTorrent is a free peer-to-peer (P2P)
content-sharing application with a complex and
dynamic overlay structure due to loose coupling, high
churn rate, and varying responsiveness of nodes. The
complexity and the dynamic nature of the overlay
structure can mask the problems in the network,
making errors difficult to detect and diagnosis in a
timely manner. Furthermore, the heavy reliance of
clients on the node local views compounds the
problems such as partitioning in the network or load
imbalance due to biased peer selection.

In an effort to provide the network with
partial global information to resolve the network
problems, this project looks into introducing a tool
that efficiently collects global information from
BitTorrent network. The tool, called Torrent Crawler
(TC) uses a number of techniques to efficiently find
all participating peers of the swarm, collecting global
information from the network. The crawler also
collects the information unobtrusively to the network
traffic. In this paper, we describe the design, the
implementation, and the evaluation of TC.

2. Introduction

BitTorrent[8] is a free P2P content-sharing
application that enables a peer to distribute its content
to a large number of peers without having a large
upload bandwidth. A peer can utilize the aggregated
upload bandwidth of the torrent swarm by duplicating
its content over several peers; a peer, who wishes to
download the content, downloads different parts of
the content from different peers simultaneously. To
download a file, a peer will first get a torrent file of
the content published by a seeder, a peer with the
entire file. The torrent file contains the URL of the
centralized coordinator, called tracker, of the torrent
network, and the file’s metadata information hash.
The downloading peer then contacts the tracker to
discover the peers to download the file from.

BitTorrent has gained a lot of popularity in
recent years. The loose coupling of nodes and the
structural redundancy to handle high churn rates and
varying node responsiveness of BitTorrent network
results in a much complicated behavior of the
network. The complexity of the overlay network

structure and the unpredictability of the clients can
cause problems in the network, making errors
difficult to detect and diagnosis. The reliance of a
node on node local views to maintain the overlay
structure further compounds the problem. Defects or
anomalies such as partitioning in the overlay or load
imbalance due to biased peer selection are
undetectable without partial global information and a
good understanding of the various characteristics and
dynamic behaviors of the network. However, such an
understanding was often times missing or incorrectly
obtained from non-representative measurement
studies, in which a few instrumented clients were
used to capture the desired properties.

Collecting representative global information
such as peer’s download rate, known neighboring
peers, and the network’s churn rate, from the
complex and dynamic BitTorrent network is not
simple. One way is to run a customized tracker to
track the distribution of particular content by
publishing a torrent file. BitTorrent tracker will work
a centralized coordinator for the torrent file, making
every downloading client to periodically contact the
tracker and sending the list of peers to each client for
its download. However, using a customized tracker to
collect global information has some drawbacks [1]:
First, each peer updates tracker of its download and
upload information once every 30 minutes. This
implies that variations on measurement in shorter
time scale are not available. Second, the tracker does
not know accurate information about connectivity of
individual peers. The tracker update message from a
client does not contain the client’s connectivity
information; a client could use a gossip like protocol
to exchange its known peer list with other clients.
Third, the tracker log does not provide any
information about peers’ maximum achievable
download and upload rates.

Another approach to collecting information
from the torrent network is to use several
instrumented clients to capture their observed
performances [4][5]. An instrumented client is a
normal BitTorrent client that can perform
measurement on its observed network status and
received message statistics. But, this approach does
not provide a representative view of all the
participating peers or group information such as the

number of seeders in the network, the availability of
pieces [1].

Instead of the above two approaches, TC
uses the network crawling based approach to collect
global information, interactively communicating with
both the tracker and the peers of any given torrent. In
order to speed up the crawling, first, TC requests the
tracker of more peers frequently than normal
BitTorrent clients. Second, TC uses BitTorrent Peer
Exchange Protocol (PEX) to discover peers known to
others from the other peers. And finally, TC
advertises itself as a seeder, a peer with whole
content, to the tracker and peers to have undiscovered
peers to connect to TC. Using TC to collect global
information on all the participating peers and the
torrent network, we plan on collecting a
representative view of all the participating peers in
about 8 minutes.

Although, BitTorrent relies on client
altruism for file sharing, because TC advertises itself
as a seeder and does not upload any contents, other
clients might punish TC for such behavior [9][10].
Fortunately, the punishment takes a form of reducing
the bandwidth allowed to TC for downloading from
the client, which is irrelevant to TC’s operation.
BitTorrent community also maintains a list of IP
ranges to block peers from unwanted organizations.
This IP blacklisting is to prevent certain
organizations from accessing the network and is not
an issue for TC.

Another interesting aspect of BitTorrent
studies is BitTorrent’s contribution to network traffic.
In this work, we make the measurement unobtrusive
to the network. To achieve this goal, TC never
actually downloads, requests, or uploads files to
observe network performance; it only uses the
BitTorrent messages sent by other peers and the
tracker to measure performance and piece availability.
TC only sends out a single handshake message to
each peer and the tracker at the beginning of the
connection (or reconnection). Although, TC contacts
the tracker more often than it is advised to get the
global population, it would not burden the entire
network much.

In addition, Torrent Crawler uses Amazon
Simple Storage Service (S3) to store the collected
information. Amazon S3 is highly scalable, reliable,
and available distributed storage system with a
simple and extensive API library. Amazon S3
provides a simple, reliable solution for any number of
clients to view the stored results. Furthermore, Using
Amazon S3 to store and to publish the collected
information separates this data storing and
organization layer from the data collection layer of
the system, without putting much extra
implementation efforts. Once the collected

information is stored in S3 as public accessible
objects, clients can use web browser to view the
information.

In this survey, we present the design, the
implementation, and the evaluation of Torrent
Crawler, a tool to efficiently collect global
information. By interactively communicating with
both the tracker and the participating peers of the
given torrent network, TC can provide a
representative view of the swarm promptly. TC relies
on BitTorrent messages sent by other peers to collect
information, instead of exchanging any actual
contents to observe network performance, making the
measurement unobtrusive to the network traffic.
Finally, the collected information is stored in
Amazon S3 for reliable accesses from any number of
clients, and to simplify data storing and organization.

3. Related Work

To gain a good understanding of various
characteristics and dynamic behaviors of BitTorrent
network, a lot of studies have been conducted from
statistical modeling to simulation, and measurement.
And to gain the good understanding that is also
representative of the entire network, people have
tried using a customized BitTorrent tracker for a
given torrent file to monitor global information.
However, BitTorrent tracker can only passively
collect information from each peer once every 30
minutes. However, this approach has limitations in
measurement time scale and efficiency. Many
dynamics and variations happen in much shorter time
scale will be lost. More importantly, the approach
cannot detect the individual peer connectivity to
detect network topology, biased peer selection, and
load imbalance [1]. Hence, it is desirable to have a
more efficient and reliable tool for collecting global
information of the network.

A more common approach to study
BitTorrent network is to use instrumented clients to
observe their performances in the torrent swarm
[4][5]. While instrumented clients provide accurate
information and measurement of the network
performance from the clients’ standpoints, the
collected data often fails to represent the entire
population of the torrent swarm [1].

In studying the effect of the torrent attacks
initiated by media corporate and movie production
studio, a group of people have used a crawling based
technique to discover all the participating peers of a
given torrent file [2]. They claim that their crawler is
able to discover most of the participating peers (i.e.
over 90% of the entire population) just under 8
minutes, and their crawler contacts the tracker as well
as using Azereus’s gossip based protocol to discover

more peers. TC also contacts the tracker to get more
peers, but more frequently; TC uses PEX instead of
Azereus’s gossip protocol to discover peers from
other peers in the swarm. We believe using PEX
instead of Azereus’s gossip protocol is better,
because a more BitTorrent clients including the most
popular µTorrent support PEX. In addition, TC
accepts incoming connections from undiscovered
peers from the swarm.

4. System Design

Torrent Crawler crawls peers in a given
torrent swarm and performs measurement on each
peer using its received messages, without sending
any unexpected or disruptive messages. The crawler
is designed to efficiently collect global information of
the network. This section describes the overall
architecture of the crawler system and some
important design choices made.

Figure 1 System Overview. Torrent Crawler (TC)
contacts a tracker to discover a set of new peers; it
connects to the peers. TC also accepts incoming
connections from other peers. At the end of its
operation, TC stores all its collected information
to Amazon S3

4.1 Architecture

Torrent Crawler is a tool to efficiently
collect global information given a torrent file. In
order to collect representative global information of
the torrent network efficiently without using either a
customized tracker or an instrumented client, TC
needs to crawl the vast majority of peers in the given
torrent swarm in a timely manner. To achieve this
goal, TC uses a number of techniques to speed up the
crawling process: First, it advertises itself as a seeder
to attract other undiscovered peers. Another benefit is
that TC can connect to the peers behind Network
Address Translation (NAT) box by accepting the
incoming connections from the peers. Second, TC
requests a tracker of peer addresses more often than it
is advised to by the tracker. The interval between

consecutive requests is chosen to be 2 minutes to
request frequently enough without getting blocked
often by the tracker. Finally, we also plan on using
Peer Exchange Protocol which allows peers to
exchange the information needed to find and connect
to peers [7]. PEX protocol is used in one of the most
popular BitTorrent client, µTorrent as well as in other
clients including Vuzu (formerly called Azereus).

Once Torrent Crawler discovers a
connectable peer, it stores the information of the peer
(e.g. pieces downloaded, latency, download rate, etc.)
and listens to their socket channels for any incoming
messages. The received messages will be used to
perform any peer-level and group-level
measurements.

After TC finishes crawling the network, it
stores the collected information as a public accessible,
and web-viewable object in Amazon S3 server.

4.2 Communication with Tracker

TC communicates with a tracker via HTTP
channel, given an URL of the tracker from a torrent
file. Because Domain Name Server (DNS) lookups
are blocking, the connection between TC and a
tracker is intrinsically synchronous; depending on the
tracker’s states and network traffic, TC’s blocking
requests to the tracker may take up to a few seconds.
And since TC requests a tracker more often than it is
supposed to, the tracker may stop listening to TC for
a period of time.

In order to continuously listen to peers
without stopping for periodical blocking requests to
tracker, we separate the asynchronous connections to
peers with the synchronous connection to tracker. TC
spawns a separate thread for handling a connection
with a tracker; the thread dedicated to the connection
uses message piping to deliver peer lists received
from the tracker to the main thread, without
interrupting the main thread.

4.3 Communication with Peer

Because of the asynchrony of the BitTorrent
Messages other than ‘handshake’ message, TC uses
non-blocking channels to communicate with peers.
TC can either connect to or accept a connection from
a peer. When TC receives an IP address and a port
number of an unknown peer from the tracker, TC
initiates a connection to the unknown peer using a
non-blocking channel. And TC also advertises a local
port bound to a non-blocking socket to the tracker for
accepting connections from any unknown peers.
Once TC establishes a connection with peers, TC
listens to the channels for any incoming BitTorrent
messages. Finally, TC does not send periodical ‘keep

alive’ messages to peers to prevent peers from
closing the connections after not receiving any
messages from TC. If a connection between TC and a
peer closes, then TC reconnects to the peer after a
time-out. This allows TC to reduce the number of
BitTorrent messages in the network and to take
several latency measurements on the particular peer,
without aggressively reconnecting if the peer
intentionally closed the connection.

4.4 Measurement

TC keeps track of the states of the
discovered peers of the given torrent. The states
includes IP address, port number, latency, download
rate, connection status, available pieces of the content,
PEX support status. To measure latency of outgoing
connections, TC initiates a non-blocking connection
to each peer and times until the connection is
established; we use WireShark to monitor
Transmission Control Protocol (TCP) packets on the
advertised port to measure incoming connection
latency. In BitTorrent, each peer sends out a ‘have’
message for each newly downloaded piece of the
content. Because peers do not send ‘have’ messages
right after they finish downloading, TC estimates the
download rate of each peer by counting the number
of ‘have’ messages received from the peer over some
time period. Finally, TC aggregates the information
from peers and the tracker to obtain the torrent
network level information, such as content
availability by piece, the total number of
seeders/leeches known to the tracker, etc. We plan on
getting the measurement done by sending just
BitTorrent ‘handshake’ messages to establish
connections to minimize TC’s effect on the network
traffic.

4.5 Storing Results in Amazon Simple Storage
Service (S3)

Amazon S3 provides a simple web-storage
interface to store and retrieve from web. The storage
system is highly scalable, reliable, and available.
Using Amazon S3 simplifies storing and organizing
the results of different torrents with different sizes.
Amazon S3 lets TC to store data as an object in a
bucket with a unique key; TC can simply read and
write to the objects via a simple interface. Lastly, TC
can store any number of objects of any sizes in S3,
without concerning over the scalability of the storage
system.

5. Implementation

Torrent Crawler uses a blocking HTTP
protocol to communicate with a tracker and non-
blocking Transmission Control Protocol (TCP)
channels to communicate with peers. The
synchronous connection between TC and a tracker is
handled by a separate thread to avoid introducing
blocking delays while continuously listening to the
asynchronous connections with peers. Each time TC
requests the tracker of more peers by sending a
tracker ‘handshake’ message, TC advertises itself to
the tracker as a seeder with a port number it is
listening on (between 6881 and 6889) to attract other
peers for incoming connections; the tracker sends
back a list of IP addresses and port numbers of a
number of peers. Similarly, when the other peers on
the network requests the tracker, they will receive the
IP address and the port number of TC.

Once TC learns about a new peer, TC
registers the peer to its selector for a sequence of
operations. First, TC initiates a connection and starts
measuring latency to the peer. In order to keep the
number of registered peers reasonable, TC will
deregister any unreachable peers after timeouts.
Second, after successfully connecting to the peer, TC
exchanges ‘handshake’ messages and receives a
‘bitfield’ message from the peer. A ‘bitfield’ message
contains information about the sender’s possession of
the file content. Lastly, upon receiving the ‘bitfield’
message, TC starts estimating download rate of the
peer by counting the number of ‘have’ messages sent
by the peer over a period of time. A ‘have’ message
is sent for each newly downloaded piece by the
sender. Once TC performs all three operations, TC
deregisters the peer from its selector, keeping the
number of registered peers reasonable over a long
period of time.

Whenever the selector times out or idles
with no registered peers, TC registers a new peer
from a queue to the selector; TC requests the tracker
of more peers if there is no more peer to register.
This policy for requesting the tracker makes TC
requests the tracker quite often.

In its ‘handshake’ response, the tracker also
specifies the interval a client should wait before re-
requesting the tracker, which is generally much
longer than 2 minutes; TC requests much
aggressively than it is advised to until some threshold
number (~90%) of discovered peer is reached given
the total number of the peers in the swarm from the
tracker. Note that the tracker is a centralized
coordinator that every peer in a torrent swarm must
contact to at least once. Because of this abnormal
behavior of TC, the tracker might block TC from
contacting the tracker for a period of time, in which
case, TC simply retries later. The interval TC waits
before retrying varies, depending on the number of

peers TC is currently monitoring and the number of
new peers that TC knows about but has not connected
to, yet.

As mentioned previously, connections
between TC and peers are asynchronous and use
TCP; TC continuously listens to the TCP sockets
associated with the peer connections. Because
messages from a peer arrive as a stream of bytes at
each socket, TC often receives fragmented messages.
Defragmentation of messages is simple because TCP
guarantees an in-order delivery of message bytes and
each BitTorrent peer message is prefixed by a fixed
size header with a message body length filed: TC
buffers a byte stream on each socket until a complete
message is received.

After a user specified crawling timer expires,
the crawler stores the message log of every messages
received during the crawling period, the history of
network connectivity and torrent file availability over
time, and the states of every discovered peer on
Amazon S3.

6. Evaluation

We have implemented a working prototype
of TC without PEX protocol. The prototype was
installed on a Linux server machine
(schroeder.csuglab.cornell.edu) for testing; we have
used actual torrent files, without having TC actually
download any of the distributed content.

In this section, we describe the results of
running Torrent Crawler with six different movie
Torrent files. The crawling time for each Torrent was
10 minutes.

6.1 Connectivity

The main goal of TC is efficiently collecting
the global information of a given Torrent network. To
achieve this goal, TC aggressively communicates
with the tracker and accepts any incoming
connections. Unfortunately, we have seen one or two
incoming connections per single ten-minute crawling.
Because the tracker randomly chooses a set of peers
to fetch to each requesting peer, there are very few
incoming connections. Furthermore, we suspect that
the firewall on the server machine could have
affected incoming connections. In the future, we plan
on isolating the effect of the random peer selection of
the tracker by disabling the firewall.

The random selection of peer set by the
tracker can also limit the rate TC discovers new peers
once TC discovers a large portion of the entire peer
population.

Figure 2 Connectivity information of the Torrent
network associated with ‘Twilight.2008.DvDrip-
NoRar__.4752496.TPB’

Figure 3 Connectivity information of the Torrent
network associated with ‘Flirting+with+40+1337x-
X.avi’

Figure 4 Connectivity information of the Torrent
network associated with
‘Kismat_Konnection_2008_DVDRip_XviD_SaM-
++Demonoid.com++’

Figure 2 shows that TC discovers some portion of the
entire participants (seeders and lechers combined) of
the network associated with Twilight movie Torrent
file and Flirting in about a minute; after a minute, the
number of ‘known’ or discovered peers stays almost
constant because tracker responses then contain peers
that are already known to TC. On the other hand, TC
discovers almost all of the peer population in Figure
4, where there are only a few hundreds peers in the
entire swarm.

Figure 5 Known (i.e. discovered) peers to the size
of swarm ratio at the end of 10 minutes crawling
for each Torrent network. Some of the ratios are
bigger than one because known peers include
peers that have disconnected from the networks.

The results demonstrate that TC discovers most of
the entire swarm, if a Torrent network is relatively
small (i.e. contains a few hundreds peers). When a
Torrent network contains thousands of nodes, then
the effect of the random peer selection of the tracker
dominates, and TC rarely receives a new peer from
the tracker after some time.

6.2 Download Rate

BitTorrent provides good bandwidth
utilization by allowing its users to perform bilateral
exchange of blocks; each user can utilize more
bandwidth by downloading different blocks from
different neighbors concurrently.

Figure 2 CDF of download rate of leechers (for all
six Torrents).

Figure 6 demonstrates that the majority of leeching
peers over all six Torrents experience aggregate
download rate of 100 kbps, which is likely because
there are more peers in the middle of their downloads.
A typical BitTorrent client experiences slower
aggregate download rates at the beginning and at the
end of downloads, ranging from 10 kbps to 300 kbps,
when they have fewer blocks to trade for new blocks
or have a few blocks to download, respectively.

Figure 3 Aggregate Download rate of peers of the
Torrent network associated with
‘Twilight.2008.DvDrip-NoRar__.4752496.TPB’
The peak at 0 kbps is due to a large number of
seeders within the network.

Figure 7 shows the download rate distribution for a
single Torrent file. The peak at 0 kbps is likely
because there are a lot of seeders, who do not
download any file content. And the download rates
for leechers are concentrated around 100 kbps, which
implies that there are more leeching peers in the
middle of their downloads. Interestingly, the
distribution (neglecting the seeders) is skewed to the

left, with a sharp cliff near 110 kbps. This is likely
because download or upload bandwidths of most of
the peers within the network are less than 100 kbps.
Having small upload bandwidths limits download
rates of users because most BitTorrent client
applications limit a user’s download rate based on the
upload rate. In general, ISPs provide each user with
higher download bandwidths and lower upload
bandwidths.

6.3 Latency

TC observes its connection links to other
peers to infer link latency to each peer. The link
latency values between TC and peers within six
different Torrent networks range from 0 to 3000 ms,
which should be a rare occurrence given a typical
TCP timeout value is 1500 ms for the first timeout
and 3000 ms for the second timeout.

Figure 4 CDF of link latencies between TC and
peers (for all six Torrents)

Figure 8 shows that less than 6 percents of the
connections over the six Torrent networks experience
link latencies bigger than 1500 ms. Furthermore, a
steep jump at 500 ms implies that there are two
modes in the distribution. About 50 percents of the
link latencies are less than 500 ms, and another 30
percents of the link latencies are between 500 ms and
1000 ms. The steep jump is likely due to the inter-
continental propagation delay; the two modes could
represent a group of peers in North America and a
group of peers in other continents, respectively.

Figure 5 Latencies of connections between TC and
peers of the Torrent network associated with
‘Twilight.2008.DvDrip-NoRar__.4752496.TPB’

Figure 9 shows the observed latency distribution of
the Torrent network associated with Twilight movie
Torrent file. As observed in the aggregate CDF
latency distribution, there are two modes; the
majority of link latencies are less than 500 ms. This is
likely because more BitTorrent users in the United
States are sharing the Hollywood movie ‘Twilight.’

6.4 Availability

Each BitTorrent client uses the rarest first
algorithm to download relatively rare available pieces
of content first. As a result, rare pieces of Torrent
networks will become more available. Even though,
the client relies on its local view to infer rareness of
each block, our results demonstrates that the rarest
first algorithm works well.

Figure 6 Availability of pieces of ‘Twilight’ movie
content after 10 minutes of crawling. This shows
no single rare piece, which could be the bottleneck
for a peer’s download completion.

7. Future Work

The prototype currently works with single
file Torrents and peers with IPv4 addresses. Although,
the majority Torrents available online are single file
and contain peers with IPv4 addresses, we plan on
extending TC to use multi files Torrents and peers
with IPv6 addresses.

Another important future extension to TC is
the use of PEX protocol. In order to speed up the
crawling process, TC needs to implement PEX
protocol. If TC connects to a peer with PEX protocol
support, then TC sends a ‘PEX handshake’ message
and receives the peer list of the connected peer. Also,
TC can form a network topology of a given Torrent
network, with the individual connectivity information
from PEX protocol.

Lastly, we plan on having TC to use a
coordinate-based mechanism proposed by S. Eugene
Ng to measure inter nodes latency [11].

8. Conclusion

This paper describes the design, the
implementation, and the evaluation of TC, a tool for
efficiently and unobtrusively collecting global
information from Torrent networks. TC efficiently
collects global information from Torrent networks,
by interactively communicating with both a tracker
and peers; TC only uses a few received BitTorrent
messages to measure important peer-level
information, such as latency, download rate, and
possession of each peer, without downloading any
file content.

The evaluation results of TC show that TC
can collect partial global information of Torrent
networks under a few minutes. We will continue to
improve the TC system to ultimately provide a
centralized system with sufficient network global
information to monitor and manage BitTorrent
networks.

9. References

[1] A. Rasti, R. Rejaie Understanding Peer-level
Performance in BitTorrent: A Measurement Study. In
IEEE 2007

[2] P. Dhungel, D. Wu, et al. A Measurement Study
of Attacks on BitTorrent Leechers.

[4] M. Izal, G. Urvoy-Keller, E. W. Biersack, et al.
Dissecting BitTorrent: Five Months in a Torrent’s
Lifetime. In PAM, 2004.

[5] A. Legout, G. Urvoy-Keller, and P. Michiardi.
Rarest First and Choke Algorithms Are Enough. In
IMC, 2006

[6] T. Isdal, M. Piatek, et al. Leveraging BitTorrent
for End Host Measurements.

[7] “http://en.wikipedia.org/wiki/Peer_exchange” last
visited on April 22th

[8] Bram Cohen. BitTorrent Specification.
“http://www.bittorrent.org/beps/bep_0003.html” last
visited on April 26th

[9]
“http://www.codinghorror.com/blog/archives/000795
.html” last visited on April 26th

[10]
“http://cubist.cs.washington.edu/Security/2009/03/13/
security-review-bittorrent/” last visited on April 26th

[11] . S. Eugene Ng and Hui Zhang, "Predicting
Internet Network Distance with Coordinates-Based
Approaches", IEEE INFOCOM'02, New York, NY,
June 2002

