
Secure Untrusted Data Repository (SUNDR)

1

Jinyuan Li, Maxwell Krohn, David Mazières, Dennis Shasha

NYU Department of Computer Science

(as presented by Lonnie Princehouse)

What can a malicious NFS server do?

2

•Integrity and consistency attacks
•Arbitrarily change data
•Falsify clients' actions
•Lose changes made by clients
•Present inconsistent views

•Confidentiality attacks
•Read confidential data

•Availability attacks
•Ignore user requests

Read-only filesystems with cryptography

3

... such as SFSRO and CFS.

Blocks keyed by hash

put(H(block), block)

get(H(block))

Signed blocks keyed by public key

put(K, block)

get(K)

Block Store

Read-only filesystems with cryptography

2

H(usr)

bin/
lib/
foo.c

H(lib)

H(foo.c)

H(data)

Root directory

Directory i-node

Directory i-node

File i-node

Read-only filesystems with cryptography

5

•<key,block> pairs are self-verifying
•Cannot be forged

•Entire filesystem is self-verifying
•Can use for any data structure
•For example, B+Trees

•Signed blocks can be overwritten
•Limited write capability for SFSRO and CFS

What can a malicious SFSRO server do?

6

•Integrity and consistency attacks
•Arbitrarily change data

•Falsify clients' actions

•Lose changes made by clients

•Present inconsistent views

•Confidentiality attacks
•Read confidential data

•Availability attacks
•Ignore user requests

Detectable

Not applicable

Not applicable

No*

Not applicable

Comparison

7

-
= Yes

= Sort of

CFS

SFSRO

SUNDR

NFS

Dist
rib

ut
ed

Dec
en

tra
liz

ed

W
rit

ea
bl

e

In
te

gr
ity

 w
ith

ou
t

tru
st

ed
 s
er

ve
r

-

-

-

Secure Untrusted Data Repository (SUNDR)

8

•How could we make SFSRO read-write?
(While protecting ourselves from a malicious server)

Secure Untrusted Data Repository (SUNDR)

9

•How could we make SFSRO read-write?
(While protecting ourselves from a malicious server)

•Need some concept of users, permissions

•Prevent server from forging writes

•Order of read/write operations must be preserved

Secure Untrusted Data Repository (SUNDR)

10

•Principals (p)
•Users (u) and groups (g)

•Each user has public/private key pair

•One superuser

•All users know superuser's public key

•Servers
•Block server stores (key,block) pairs

•Consistency server does everything else

•Can be on different machines

Secure Untrusted Data Repository (SUNDR)

11

Each principal has an i-table

i-node hashes

Group i-tables

2 → 〈u4,1〉
3 → 〈u1,3〉
4 → 〈u4,5〉
5 → 〈u6,1〉
6 → 〈u3,3〉
...

g3

User i-tables

2 → H(i4)
3 → H(i7)
4 → H(i9)
5 → H(i3)
6 → H(i1)
...

u3

i-numbers

Secure Untrusted Data Repository (SUNDR)

12

Directory i-nodes associate filenames with i-table entries

2 → 〈u4,1〉
3 → 〈u1,3〉
4 → 〈u4,5〉
5 → 〈u6,1〉
6 → 〈u3,3〉
...

g2

2 → H(i4)
3 → H(i7)
4 → H(i9)
5 → H(i3)
6 → H(i1)
...

u3

"foo.c" → 〈u1,2〉
"bar" → 〈u3,4〉
"README"→ 〈u5,1〉
"etc" → 〈g2,5〉
...

Secure Untrusted Data Repository (SUNDR)

13

•Root directory /sundr
•Signed by superuser
•Two special files describe user and group membership
 /sundr/sundr.users: User id → public key
 /sundr/sundr.group: Group membership

"sundr.users"
 → 〈u1,1〉
"sundr.group"
 → 〈u1,2〉
...

Simplified SUNDR model

14

•Operations totally ordered
•Global lock prevents concurrent operations

•Users sign every operation
•Signature reflects both the operation and every operation
preceding it

Simplified SUNDR model: fetch and modify

15

•To fetch or modify a file, a client...
•Acquires the global lock

•Downloads entire history of operations

•Validates each user's most recent signature

•Checks for own last operation

•Reconstructs a local copy of the filesystem by replaying
history
 • Check validity of each modification

•Uploads new operation and signature

•Releases the global lock

Simplified SUNDR model: fetch and modify

16

Time

Simplified SUNDR model: fetch and modify

17

Time

o1

u3 write

Simplified SUNDR model: fetch and modify

18

Time

o1

u3 write

u3 sig

Simplified SUNDR model: fetch and modify

19

Time

o1

u3 write

u3 sig

o2

u1 read

Simplified SUNDR model: fetch and modify

20

Time

o1

u3 write

u3 sig

o2

u1 read

u1 sig

Simplified SUNDR model: fetch and modify

21

Time

o1

u3 write

u3 sig

o2

u1 read

u1 sig

o3

u7 write

Simplified SUNDR model: fetch and modify

22

Time

o1

u3 write

u3 sig

o2

u1 read

u1 sig

o3

u7 write

u7 sig

Simplified SUNDR model: fetch and modify

23

Time

o1

u3 write

u3 sig

o2

u1 read

u1 sig

o3

u7 write

u7 sig

o4

u2 write

Simplified SUNDR model: fetch and modify

24

Time

o1

u3 write

u3 sig

o2

u1 read

u1 sig

o3

u7 write

u7 sig

o4

u2 write

u2 sig

Simplified SUNDR model

25

•Server's only attack is to omit operations
•Clients remember their last signature
•Once a client knows about an operation, cannot be rescinded

o1

u3 write

u3 sig

o2

u1 read

u1 sig

o3

u7 write

u7 sig

Simplified SUNDR model

26

•Server's only attack is to omit operations
•Clients remember their last signature
•Once a client knows about an operation, cannot be rescinded

o1

u3 write

u3 sig

o3

u7 write

u7 sig

o4

u2 write

u2 sig

Miss
in

g O
per

at
ion

!

Simplified SUNDR model

27

•Server's only attack is to omit operations
... more recent than client's last action.

This is called a fork.

o1

u3 write

u3 sig

o2

u1 read

u1 sig

o3

u7 write

u7 sig Miss
in

g O
per

at
ion

?

Fork consistency

28

•Clients have differing views due to omission
•Malicious server must ensure two clients with forked views
never again see each others operations

•A client's internal view remains consistent

•Fetch-Modify Consistency
•What we expect from a filesystem: All clients see the same
total ordering of operations

•Stronger than fork consistency

•SUNDR delivers fork consistency, but communication
between clients can strengthen it to fetch-modify consistency

Serialized SUNDR

29

•Version Structures
•We only really need the
latest signature and operation
from each user

•Keep a Version Structure for
each user

•The simplified model sends the entire history to a
client for each operation

•Ridiculous

Serialized SUNDR

30

i-handle of user's i-table

•Version Structure List (VSL)
•Stored on server

•Contains latest version structure for each user

User ID

i-handles of groups

latest version of each principal

Notation: v[p] is p's value in
the version vector of version
structure v

Serialized SUNDR: Fetch/modify

31

•To fetch or modify, a client must...
•Acquire global lock

•Download VSL

•Create updated version structure V for itself

•Construct a version vector from the VSL
 •For users, get number from each user's VS
 •For groups, take version from VS with latest group i-handle

•Increment own version number in version vector

•Increment version number of any modified groups
 (and include i-handle)

•Check consistency of VSL + {V}

•Sign and upload V. Release global lock

VSL Consistency

32

•Does VSL contain user's previous version structure?

•Define ≤ for version structures x and y:

x ≤ y ⇔ ∀p x[p] ≤ y[p]

•Is VSL + {V} totally ordered by ≤ ?

Version Structures During a Fork Attack

33

Concurrent SUNDR

34

•Clients pre-declare operations

•Update Certificates notify server of clients' intent

User's next version number

Hash of user's current VSL entry

List of modifications to perform

Update Certificate

Signature

Concurrent SUNDR

35

•Possible modifications
•Set file <user,i#> to i-hash h

•Set group file <group, i#> to <user, i#>

•Set/delete named entry in directory <p,i#>

•Pre-allocate range of group i-numbers

Concurrent SUNDR: fetch/modify

36

•Client sends update certificate c before receiving VSL

•Tuples <certificate, vs>

•vs is an unsigned version struct generated by the server

•Client cannot predict the new version vector before it receives the VSL

•Server maintains a Pending Version List (PVL)

•Server generates version structure vs, adds <c,vs> to PVL

•Server replies with VSL and PVL

•An honest server orders entries in the PVL by order of certificate arrival

Concurrent SUNDR: fetch/modify

37

•Update V with PVL version numbers

•Client uses VSL to compute a new version structure V

•Check consistency of VSL + PVL + {V}

•Send version structure to server

Concurrent SUNDR: Update conflicts

38

•Read-after-write

If client is fetching a file and PVL contains modification to that file,
then there is a read-after-write conflict.

Client commits version structure as before, but then waits for
fetched files to be committed to VSL before returning.

•Write-after-write for groups

Extend version structure to contain last seen PVL

What can a malicious SUNDR server do?

39

•Integrity and consistency attacks
•Arbitrarily change data

•Falsify clients' actions

•Lose changes made by clients

•Present inconsistent views

•Confidentiality attacks
•Read confidential data

•Availability attacks
•Ignore user requests

Detectable

Detectable

Limited: Fork attacks

Limited: Fork consistency

Not applicable

Results

40

Results

41

Concurrent LFS Small File Benchmark, create phase.
1000 creations of 1 KB (SUNDR relative std. dev. in 3
concurrent is 13.7%

Results

42

Results

43

Results

44

