
User-level file systems

• Developing new file systems is a difficult task

- Most file systems implemented in the kernel

- Debugging harder, crash/reboot cycle longer

- Complicated kernel-internal API (VFS layer)

• File systems are not portable

- Kernel VFS layer differs significantly between OS versions

• NFS can solve these problems. . .

- C++ toolkit greatly simplifies the use of NFS



NFS overview

client
NFS

File
Server

UDP

Application

user
kernel

system
call

VFS

• NFS is available for almost all Unixes

• Translates file system accesses into network RPCs

- Hides complex, non-portable VFS interface



Old idea: NFS loopback servers

client
NFS

Application

user
kernel

system
call

NFS
loopback
server
UDP

VFS

• Implement FS as an NFS server in a local process

• Requires only portable, user-level networking

- File system will run on any OS with NFS support



Problem: Performance

• Context switches add latency to NFS RPCs

• Must service NFS RPCs in parallel

- Overlap latencies associated with handling requests

- Keep disk queue full for good disk arm scheduling

• If loopback server blocks, so do other processes

- E.g., loopback for /loop blocks on a TCP connect

- getcwd() and “ls -al /” will block, even outside of /loop

• One slow file can spoil the whole file system a

- If one RPC times out, client decides server is down

- Client holds other RPCs to avoid flooding server

- Example: Alex FTP file server
a
NFS3ERR JUKEBOX can help, but has problems



Problem: Any file I/O can cause deadlock

buffer
cache

NFS
loopback
server

FFSVFS

read
kernel
user

2

3
1 4

client
NFS

1. Loopback server reads file on local disk

2. FFS needs to allocate a buffer

3. Kernel chooses a dirty NFS buffer to recycle

4. Blocks waiting for reply to write RPC



Problem: Development and debugging

• Bugs must be mapped onto NFS RPCs

- Application make system calls

- Not always obvious what RPCs the NFS client will generate

- Bug may actually be in kernel’s NFS client

• When loopback servers crash, they hang machines!

- Processes accessing the file system hang, piling up

- Even umount command accesses the file system and hangs

• Repetitive code is very error-prone

- Often want to do something for all 20 NFS RPC procedures

(e.g., encrypt all NFS file handles)

- Traditionally requires similar code in 20 places



SFS toolkit

• Goal: Easy construction of loopback file systems

• Support complex programs that never block

- Service new NFS RPCs while others are pending

• Support multiple mount points

- Loopback server emulates multiple NFS servers

- One slow mount point doesn’t hurt performance of others

• Simplify task of developing/debugging servers

- nfsmounter daemon eliminates hangs after crashes

- RPC library supports tracing/pretty-printing of NFS traffic

- RPC compiler allows traversal of NFS call/reply structures



nfsmounter daemon

• nfsmounter mounts NFS loopback servers

- Handles OS-specific details of creating NFS mount points

- Eliminates hung machines after loopback server crashes

• To create an NFS mount point, loopback server:

- Allocates a network socket to use for NFS

- Connects to nfsmounter daemon

- Passes nfsmounter a copy of the NFS socket

• If loopback server crashes:

- nfsmounter takes over NFS socket

- Prevents processes accessing file system from blocking

- Serves enough of file system to unmount it



Asynchronous I/O and RPC libraries

• Never wait for I/O or RPC calls to complete

- Functions launching I/O must return before I/O completes

- Bundle up state to resume execution at event completion

• Such event-driven programming hard in C/C++

- Cumbersome to bundle up state in explicit structures

- Often unclear who must free allocated memory when

• Alleviated by two C++ template hacks

- wrap—function currying: bundles function of arbitrary

signature with initial arguments

- Reference counted garbage collection for any type:

ptr<T> tp = new refcounted<T> (/* ... */);



rpcc: A new RPC compiler for C++

• Compiles RFC1832 XDR types to C++ structures

- Saw native representations last lecture

• Produces generic code to traverse data structures

- RPC marshaling only one possible application

• Can specialize traversal to process particular types

- Encrypt/decrypt all NFS file handles for security

- Extract all file attributes for enhanced caching

• Outputs pretty-printing code

- ASRV TRACE, ACLNT TRACE environment variables make

library print all RPC traffic

- Invaluable for debugging strange behavior



Stackable NFS manipulators

• Often want to reuse/compose NFS processing code

• SFS toolkit provides stackable NFS manipulators

- NFS server objects generate NFS calls

- Most loopback servers begin with nfsserv udp

- Manipulators are servers constructed from other servers

• Example uses:

- nfsserv fixup—works around bugs in NFS clients

- nfsdemux—demultiplex requests for multiple mount points



Creating new mountpoints

• Hard to create mountpoints in-place and on-the-fly

- If user looks up /home/u1, must reply before mounting

- Previous loopback servers use links: /home/u1→/a/srv/u1

• SFS automounter mounts in place with two tricks

- nfsmounter has special gid, differentiating its NFS RPCs

- SFS dedicates “wait” mountpoints under .mnt/{0,1,...}

• Idea: Show different files to users and nfsmounter

- User sees /home/u1 as symlink u1→.mnt/0/0

- .mnt/0/0 is symlink that hangs when read

- nfsmounter sees /home/u1 as directory, can mount there

- When mount complete, .mnt/0/0→/home/u1



Limitations of loopback servers

• No file close information

- Often, FS implementor wants to know when a file is closed

(e.g., for close-to-open consistency of shared files)

- Approximate “close simulator” exists as NFS manipulator

- NFS version 4 will include closes

• Can never delay NFS writes for local file system

- E.g., CODA-like cache hard to implement



Application: DumbFS

client
NFS

Application

user
kernel

system
call UDP

File
Server

dumbfs

VFS

• Simplest loopback server—just forwards requests

- 119 lines of code, no cleanup code needed!

• Isolates performance impact of toolkit



DumbFS NFS RPC forwarding

void dispatch (nfscall *nc)

{ // ...

nfsc->call (nc->proc (), nc->getvoidarg (),

nc->getvoidres (), wrap (reply, nc) /* ... */);

}

static void reply (nfscall *nc, enum clnt_stat stat)

{

if (stat == RPC_SUCCESS) nc->reply (nc->getvoidres ());

else // ...

}

• Single dispatch routine for all NFS procedures

• RPCs to remote NFS server made asynchronously

- dispatch returns before reply invoked



DumbFS performance

Latency
0

100

200

300

µ
se

c

Throughput
0

5

10

M
B

y
te

s/
se

c

Compile
0

100

200

300

se
co

n
d

s

NFS

DumbFS



Application: CryptFS

• Acts as both NFS server and client (like DumbFS)

- Almost 1–1 mapping between NFS calls recevied and sent

. . . encrypt/decrypt file names and data before relaying

- Bare bones “encrypting DumbFS” <1,000 lines of code,

Complete, usable system <2,000 lines of code

• Must manipulate call/reply of 20 RPC proceedures

- Encrypted files slightly larger, must adjust size in replies

- All 20 RPC procedures can contain one more file sizes

- RPC library lets CryptFS adjust 20 return types in 15 lines



Emacs compile

0

100

200

300

E
xe

cu
ti

o
n

 T
im

e 
(s

ec
o

n
d

s) Local

NFS3

cryptfs

CFS-async

CFS-sync

dumbfs



User-level FS summary

• NFS allows portable, user-level file systems

- Translates non-portable VFS interface to standard protocol

• In practice, loopback servers have had problems

- Low performance, blocked processes, deadlock, debugging

difficulties, redundant, error-prone code,. . .

• SFS toolkit makes most problems easy to avoid

- nfsmounter eliminates hangs after crashes

- libasync supports complex programs that never block

- rpcc allows concise manipulation of 20 call/return types

- Stackable manipulators provide reusable NFS processing


