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A space-efficient algorithm for local

similarities

Xiaoqiu Huang, Ross C.Hardison’ and Webb Miller?

Abstract

Existing dynamic-programming algorithms for identifying
similar regions of two sequences require time and space
proportional to the product of the sequence lengths. Often this
space requirement is more limiting than the time requirement.
We describe a dynamic-programming local-similarity algorithm
that needs only space proportional to the sum of the sequence
lengths. The method can also find repeats within a single long
sequence. To illustrate the algorithm’s potential, we discuss
comparison of a 73 360 nucleotide sequence containing the
human (3-like globin gene cluster and a corresponding 44 594
nucleotide sequence for rabbit, a problem well beyond the
capabilities of other dynamic-programming software.

Introduction

Local sequence alignment algorithms seek only conserved
regions, whereas global methods align entire sequences
including unconserved regions. A number of dynamic-
programming algorithms for local sequence alignment have been
developed (Smith and Waterman, 1981; Goad and Kanehisa,
1982; Sellers, 1984; Gotoh, 1987; Waterman and Eggert,
1987; Hall and Myers, 1988). Indeed Waterman (1988) states
that such a method is ‘probably the most useful dynamic
programming algorithm for current problems in biwology’.

Alternatively, far faster heuristic methods are known (Karlin
et al., 1988; Pearson and Lipman, 1988; Pearson, 1990).
Indeed, there exist programs that produce useful, though
limited, information and that run 10* times faster than the
program reported here (Altschul er al., 1990). Although
they are very slow by comparison, dynamic-programming
algorithms have the advantage of producing high-resolution
alignments that are guaranteed to optimize a well-understood
alignment score. The program presented in this paper first
computes a highest-scoring alignment, then an alignment that
is highest-scoring among all alignments containing no aligned
pair from the first alignment, then a highest-scoring alignment
that is disjoint from the first two, and so on. Alignment scores
depend on only three parameters, which can be freely adjusted
to achieve some desirable effect.
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Frequently, execution efficiency is less important than having
a program that is trivial to operate and that produces easily
interpreted results. For example, we describe below the
comparison of a 73 kb DNA sequence with a 44 kb sequence
to find the 100 best non-intersecting local similaritics. Execution
time was not an important constraint. Rather, we wanted the
comparison to proceed without requiring intervention from us
and to produce results that optimize some explicit measure of
similarity. In this case, the difficulty with dynamic programming
approaches is that existing softwarc retains a huge ‘traceback’
matrix. For our two sequences, billions of bytes of storage
would be required, more than all the disk space available to us.

The software described in this paper easily solved the problem
on our workstation. The program ran unobtrusively (i.e. ‘in
the background’ and at low priority), cranking out four or five
alignments per day while the workstation performed its regular
duties. Recent improvements (X.Huang and W .Miller Advances
in Applied Mathematics in press) allow all 100 alignments to
be computed overnight. In addition, the program and all its data
fit handily in memory; the only use of disk space was to hold
computed alignments.

Our linear-space local similarity algorithm combines the
linear-space global alignment algorithm of Myers and Miller
(1988) with techniques of Waterman and Eggert (1987). The
algorithm and a variant for finding repeated regions in a single
sequence are described in detail below. We then discuss the
application of our method to the alignment of long DNA
sequences.

System and methods

The program described in this paper is written in C and
developed on a Sun4/260 running SunOS Unix. The code is
portable and is designed to run on a workstation or a large
personal computer.

Algorithm

Before launching into a precise description of the lincar-space
algorithm, we give an informal sketch. Conceptually, aligning
a M-element sequence with a N-element sequence amounts to
determining the entries of a (M + 1) X (N + 1) matrix of
alignment scores, where values are computed systematically
from the upper left corner of the matrix to the lower right. To
find just the score of an optimal alignment it is sufficient
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to save a few rows (or columns) of the matrix; traditional
techniques to explicitly produce an optimal alignment require,
in essence, that the entire matrix be retained.

Smith and Waterman (1981) arrange the computation so that
the largest value in the matrix corresponds to the right end of
an optimal local alignment. Starting at the position of this
maximum value and inverting the process, i.e. computing from
lower right to upper left, we find the left end of our optimal
local alignment. Once these endpoints are known, the problem
is reduced to finding an optimal global alignment on a sub-
matrix, and the procedure of Myers and Miller (1988) can be
invoked.

With an optimal local alignment in hand, we can apply a
technique of Waterman and Eggert (1987) and repeat the above
steps to compute the second best local alignment, where we
do not allow a pair of sequence positions that correspond under
the first alignment to correspond under the second alignment.
Continuing, we can find the & best non-intersecting local
alignments for any & > 0.

Finding a best local alignment

When scoring an alignment between a region (i.e. a consecutive
substring) of @@, + * - ay and a region of byb, - - - by, a
bonus v(a;,b;) is added for every aligned pair (a;,5;) and a
penalty ¢ + rx is subtracted for each gap of length x. Here
g can be thought of as the cost of opening up a gap, while each
symbol in the gap costs r. The following development parallels
that in Myers and Miller (1988).

Define
H(i,jy = larger of 0 and maximum score of any local alignment that ends at (.j)
£(1j) = maximum score of any local alignment that ends at (i,j) with 4; in a gap
F(i,j) = maximum score of any local alignment that ends at (i./) with b; in a gap

Since E(0,/) and F(i,0) can be defined freely, they are chosen
to make the recurrences correct on the boundary. This gives
the following equations.

max[O,E(i,j).F(i,j).H(f“l‘j—l)+v(a,.bj') if i>0and j>0

Hijy =19 if i =0 or j=0
. max{EG—1/)H(i—14) — ¢t —r ifi>0and j>0
E@)) = —g if i=0and j>0
. max{F@i,j-1},H(ij—=1) - gl -~ r ifi>0and ;>0
) = | —4 if i>0and j=0

A best local alignment ends at (/,.J) if
HJ)y =max{H(Gj): 1 =i < Mand 1 < j < N}

H(1,J) is the score of that best local alignment. Figure 1(A)
gives an algorithm that uses the above formulas to locate such
a (1,J) in linear space. Since only the maximum similarity score
is required, it is sufficient to save only the most recently
computed rows of the H and E. The vectors HH and EE are

vectors HH[0O . . N1LEE{0 . . N]
scalars f, h, p

score — [ — J — 0
for j — 1 to N do
i HHG)Y - 0
EE() — — ¢
|
for i — 1 to M do
f h—p—20
f——yq
for j — | to N do
(f— max {fh —gi — r
EE(jy — max |[EE().HH() — g} — r
h — max {0.EE()fp + via; b))

p — HH()
HH{j) — h
if 1 > score then
{ score — h
1—i
J—

}
}
i
write ‘a best alignment ends at’ (11)

Fig. 1(A) Forward pass to find the end-point,

vectors HH[0 . . N],EE[O . . N]
scalars f, i, p

cost — K — [ — 0
for j — J downto | do
{ HH(j) — -1
EE() — — 1
}
for i — I downto | do
[ h=f——1
p+— ifi = [then 0 else — |
for j — J downte 1 do
{f— maxifh - q) = r
EE(j) — max {EE(),HH() — q} — r
h — max [EE(j).f,p + v(a,.bi)}
p — HH{j}
HH(jy — h
if & > cost then
{ cost — h
K— i
L~
if cost = score then
goto found

}
§

found: write ‘the best alignment starts at’ (K,L}
Fig. 1(B) Reverse pass to find the start-point.

used for this purpose. If rows / — 1 of H and FE are stored in
HH and EE respectively, then rows i are computed by over-
writing values for rows i — 1 in a lefi-to-right order using three
scalars, f, # and p. Specifically, if /,j > 0, then before the start
of the jth iteration of the inner for loop, we have

H(i,k) itk <j

HH®Y = g Z gy itk =
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_ VEGkR) ifk <j

EE®) = E(l — 1Lk) ifk =
f=Fij -1
h=HGj— 1

p=Hi—1j-1

With this loop-invariant condition in mind, Figure 1(A) is
readily understood. Note that there is no need to have a vector
for the F array since the F values on row i do not depend on
those on row ¢ — 1. In Figure 1, the scalar fis used to save
the last F value computed on the current row.

Once we have determined that a best local alignment ends
at (1.J), the next step is to locate the start-point of that alignment.
That is, we want to find K € [1,{] and L € {1,/] such that
some (global) alignment of agag,, - - - arand byby | - - -
by achieves a score H{I.J). The algorithm in Figure 1(B) finds
such a (K,L). Notice that the algorithms in Figure 1(A) and
{B) are not symmetric. Because several best alignments may
exist, a point with the maximum value in a reverse pass may
be the start-point of an alignment not ending at (1,J). To
guarantee that the correct start-point is found, we set the initial
values of H, Eand Fto —1, except for the value of H on the
origin (i.e. p = 0 when i = I). In addition, 0 is removed from
the maximum expression in computing H. It is not difficult to
show that the (K, L) computed by the algorithm in Figure 1(B)
is indeed the desired point. Observe that in the reverse pass,
the computation can stop when cost > score.

Alternatively, start-points of optimal alignments can be
determined during the initial forward pass. The idea is that when
a matrix value X(i,j} is computed (X is H, E or F ), the left
endpoint of an alignment ending at (i,j) with score X(ij)is
computed accordingly. Indeed, it is possible to keep track of
the numbers of insertions and deletions in an optimal alignment
(Gotoh, 1987). Since this method spends extra time on each
matrix entry, and since an optimal local alignment is normally
much shorter than the orginal sequences, the one-pass method
is slower than our two-pass method for computing a single
optimal alignment,

Once the start-point (K,L) and end-point (1.J) of a best
alignment are determined, the alignment can be recovered by
applying the method of Myers and Miller (1988) to substrings
agag 4y - v agand bpby o - - - by Since that procedure
minimizes a distance measure instead of maximizing a similarity
score, a conversion is required. Parameters w, g and 4 for the
distance measure are calculated by the transformations

wia,b) = v.. — via,b) for all pairs (a,b)
§=4q
h=r+ Yy

max

where v, = maxg pyv(@,b) (Smith et al., 1981). The

vectors HH{O . . M].EE[0 . . M]
scalars f, h, p

score — [ — ) — (@
for j — 1 to N do

! HH(j) — 0
EEGY — — ¢
}
fori~ ltoM — 1 do
b h—0
p — HH()
J— -4

forj — i+ 11to Mdo
Cf—max{fh —g) —r
EE() — max (EE().HHG) — ] — r
h — max {0,EE() fp + via. b))

p — HH()
HH(j) — h
if &4 > score then
| score — h
[ — i
J—j

}
!
!

write "a best alignment ends at’ (1))
Fig. 2(A) Forward pass to find the end-point,

vectors HH[O . . M) ,EE[0 . . M]
scalars f, h, p

cost — K — L — 0
for j — J downto | do
UHHG) — — 1
EEG) — — 1
]
for ; — 1 downto 1 do
[ hefe -1
p — if i = [ then 0 else — 1
for j — J downto i + 1 do
(' F = max{fh —qf —r
EE() ~— max {EE()),HH() — g} — r
Ao max [EEG)fp + via.b)
p — HH()
HH()) — h
if 7 > cosr then
[ cost — h
K —i
L
if cost = score then
goto found

}
}

found: write ‘the best alignment starts at’ (K.L)
Fig. 2(B) Reverse pass (o find the start-point.

Myers—Miller algorithm requires linear space and quadratic
time, so a single best local alignment can be found in
O(M + N) space and O(MN) time.

Finding k best non-intersecting alignments

To find several non-intersecting alignments, the algorithm
of Figure 1 is applied repeatedly with the slight twist that
aligned pairs (a;,5;) are excluded from subsequent alignments.
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Specifically, if (a;,b;) is already used, then H(i — 1/ — 1) +
via;b;) is removed from the maximum expression in
computing H(i,j) in all subsequent computations, i.e. the
forward pass, the reverse pass and the Myers—Miller
procedure.

For each row i € [1,M] we maintain a sorted list of all j
€ [1,N] such that (a;b;) appears in a previous alignment.
O(MN) time is spent searching the lists when computing one
alignment, so the total time to compute & best non-intersecting
alignments is Q(kMN). In theory, the major storage requirement
is for Ok X min(M,N)] space to hold aligned pairs. However,
in practice the space used may be O[min(M,N)] because most
local alignments are much shorter than min(M,N).

Finding repeated regions within a sequence

When the two sequences being aligned are identical, the matrix
H becomes a symmetric matrix with a trivial alignment on the
main diagonal. To avoid this trivial alignment, we compute just
the half of H above the main diagonal. The recurrences are
adjusted as follows:

B maxfO.E (i ) F () H = 1= 1) +v(a,b)] if 150 and i<j
H{ij) =}

fi=0ori=j
L max{EG—1j) HG—14) — ¢l — r ifi>0and i<j
Etjy = 4 if i =0 and j>0
. max{FE -1 Hij—1) — gt —r  ifi>0and i<j
Fliy =1 -4 if i>0and i =

Note that there is no need to compute E(i,f) and F(0,).

The algorithm for finding the start-point and end-point of a
repeat is given in Figure 2. The algorithms in Figures | and
2 differ only in the index limits of the inner for loops and in
the initial value for p in the forward pass. Notice that in Figure
2(B) the first for loop initializes to —1 the values of H and
E on the main diagonal from (1,1) to (/,1).

After a best algorithm is located, the Myers—Miller
procedure is again called to construct the actual alignment. Like
the algorithm in Figure 2, the Myers —Miller algorithm must
avoid the main diagonal. The lists introduced for storing
previously aligned pairs are also useful here. Before the
Myers —Miller algorithm is invoked, each i € [1,M] is entered
into the list for row . The algorithm in Figure 2 can also be
easily generalized to find & best non-intersecting repeats, as in
the two-sequence case.

Implementation

We have implemented the algorithms in Figures 1 and 2 as a
portable C program called SIM. SIM finds similar segments
or repeats according to user-supplied scoring parameters v(a,b),
q and r. For DNA sequences, users can simply provide numbers
m, g and r, where m is a negative number used for scoring
each mismatch [i.e. aligned pair (a,b) with ¢ # b] and
non-negative numbers ¢ and r specify a gap penalty gx + r

to be subtracted for each gap of length x. Aligned pairs (a,b)
with @ = b automatically receive the bonus 1.0. Incidentally,
replacing real arithmetic by integer arithmetic in the Myers—
Miller software resulted in the program running around five
times faster on our machine (a Sun 4/260).

The SIM program was used to align the 73 360 nucleotide
sequence of the human gB-like globin gene cluster with the
44 594 nucleotide sequence of the same gene cluster in rabbit.
After some experimenting, we settled on a mismatch penalty
of m = —1.5, gap-open penalty of g = 6 and gap-extension
penalty of » = 0.2, which seemed useful for producing long
alignments while minimizing inappropriate maiches, e.g.
between non-homologous repeats in the two species. At these
criteria, the longest aligned segment includes 9875 nucleotides
from the human sequence and 10 724 nucleotides from the
rabbit sequence, in both cases containing the 6- and (3-globin
genes along with the intergenic sequences. If repeats in the rabbit
sequence are counted only once, and repeats not homologous
between species are ignored (Margot ef al., 1989), only 31 800
of the 44 594 nucleotides are available for matching with the
human sequence. Six alignments accounted for 21 464 of these
nucleotides (67%).

Most of the sequence alignments are in regions known to be
similar by dot-plot analysis (Margot er al., 1989), but the
alignments allow the sequences to be analyzed at high resolution
(i.e. individual nucleotides). As expected, long regions of
sequences within and flanking the orthologous genes are aligned.
The previous dot-plots could enly reveal matching sequences
at a resolution of ~50—100 nucleotides, and one could not
determine instantly which sequences were conserved. In the
new alignments, one can see the most conserved regions easily,
and very short, well-conserved sequences (even only 10—20
nucleotides long, the size of recognition sites for transcription
factors) are readily apparent. The protein-coding sequences are
well conserved, as expected, but these alignments also show
extensive matches in the flanking and intron regions. These
conserved sequences are candidates for regulatory regions, and
they are the targets for on-going site-directed mutagenesis
studies to ascertain possible functions.

An example of the sequence alignment in a known regulatory
region is that of the y-globin gene promoter, shown in Figure
3. As expected, the binding sites for known transcription
factors, such as TFIID, the CAAT-binding protein CPI,
CACCC-binding protein, the octanucleotide binding factor
OTF1 and NFEI (reviewed by Johnson and McKnight, 1989),
are well conserved in both species. The CCAAT-boxes are
duplicated in the y-globin gene promoter, at positions 1214 and
1241 in the alignment, but the sequence matches around the
distal CCAAT-box are more extensive than are those around
the proximal CCAAT-box. It is notable that the upstream
CCAAT-box is preceded by a binding site for the factor NFE3
(Mantovani et al., 1989), which may account for the more
extensive conservation. In this same region, the CCAAT
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NFE1
350 . : R : Ftbttt o . : . : . : . : . : . : . :
38508 GAAGTGAACCTAGCATTTATACAAQAIAAIIAATTCTAATCCACAGTACCTGCCAAAGAACATTCTACCATCATCTTTACTGAGCATAGAAGAGCTACGC Fuman
I PEE T L B I N B i
14554 AAATTTTCCCTGGCATTTATCAGWTACTCAGAGCCACA CTGAGT?\.CAGAAGAGCAACAC rabbbit
et
NFE1l Enh core
450 . : ) : . S S . : . : . : . : . :
38608 CAAAACCCTGGGTCATCAGCCAGCACAQAEAHTTATQQAQTGETAAATACACATCATCTGGTGTRTACATA CATACCTGAATATGGAATCAAAT..."300 nts. ..,

FEETY 0 iy 4 FEVLTRETT e o 1y L R A N N N p—— N Il FEE T ==1 1
14620 CAATACTCTGGGTCACCAGTCAGCATAQAQAQIIAIQCAGIQQGAAGCACACATTATGTGGTGCCTACAGAGCAAGACATTCATGTGGATGAAA ATAT.. . ~300 nts. ..
R R T SRR

: . M . : . : . : . ! Bt . : . H . :
38966 AATCCTGGACCTATGCCTAAAACACATTTCACAATCCCTGAACTTTTCAAAAATTGGTACAIQQIIIAQQITTAAACTACAGGCCTCACTGGAGCTACAG human
FELE T rr i 1y el B S AR FEETTTL ey [ L I T O I O I
15012 AATCTTGGATCTGTGCCCAAAAT TATCTGAAT ACTTTTCATATGTTTGCTTAIGQIIIAQQIATAATTTGCAGGCATCTATGGTGTTAGTG rabbit
-t

9540 . : B : . : . : . : . : . Purine-rich : . H
39066 ACAAGAAGGTAAAAAACGGCTGACAAAAGAAGTCCTGGTATCCTCTATGATGGG human
P 0 -1 [N N N RN N R PEd===1 000 00 iy N N N I e
15103 ACTARAATATAGGAAATG CTGGCAAAAAAAGTCCTAGACTATTTAATGGTGAGG"' AAGARAAATA AAATAGAAAAATARR AGAACTCTT rabbit

-202 -198 -196 NFE1 OTF1

1050 . : . : . : . : . : . : . : o [ A EE L e T e
39158 AAACTGGAATGACTGAATCGGAACAAGGCAAAGGCTATAAAAAAAATTAAGCAGCAGTATCCTCTTGGGGGCCCCTTCCCCACACTATCTCAATGCA human
=111 L et N R N R I Y T FEE T e e 1 R N N B TEETEE T ==
15202 TAAARARATGAAT TGAAAAGGGACAGGAC TAACAAAACTTGAGGAGCAGAGCCCCCTTGAGGGGGCCTCTCTGCCACTATCTCAAT A rabbit
Tttt 4
=175 -117
| CDP CDP jorn) 3
NFE1 NFE3 +t+++ ++++ e
—-++ +++ CAC-BP ++++++t+4++4+CP1 NFE1 CP1
1150 ++4+ . : Fbtt: . : N et ] bt X Dttt

39255 aaTa TCTGTCTGAAACGGTCCCTGGCTAAACTCCACCCATGGGTTGGCCAGCCTTGCCTTGACCAATAGCCTTGACAAGGCAAACTTGACCAATAGTCT human
FEI=10000 0 0 =11 44y PEEVEE i 1 FEVTRLVET T i oy gt Il PETEEETT )
15289 TATAGTCTGTGTGAAGCT TCTCTGCCTAAACCTCACCCCTGCGCTGACCAGCCTTGCCTTGACCAATAGTCGTTACACAAAAACACTGACCAATAGCCT rabbit

—tt-—ttt +i++ e+ 4
R +ttt
T+t
TFIID cap
1250 ++++++ |

39354 TAGAGTATCCAGTGAGGCCAGGGGQQGGCGGCTGGCTAGGGATGAAGAATAAAAGGAAGCACCCTTCAGCAGTTCCACACACTCGCTTCTGGAACGTCTG hurman
[ T R R O T PLEEEIL ===t 1 LT o gy P TEE e o R
15388 CAGAGAACACGGCGAAACAAGEQQQQAG ATGTCCAGCGAGGAAGAATAAAAGGACGAGCCTTAGBGCAGTTTCACATACTTGCTTCTGAGACATCTG rapbit
e e J

Fig. 3. Alignment of the promoter region for the y-globin genes in humans and rabbits. A small subset of a SIM alignment (match = 1, mismatch — — L5,
&ap-open penalty = 6.0, gap-extension penalty = 0.2) that begins at position 38196 in the human sequence (5’ to the A v-globin gene) and at position 14241
in the rabbit sequence (5° to the ¥-globin gene) is shown. Vertical lincs indicate matching nucleotides, and dashes are gaps introduced to optimize the aligniment.
The cap site, which encodes the aucleotide at the 5’ end of the mRNA, is indicated at position 1329. A march to the consensus sequence for a known binding
protein is indicated by a+, and a mismatch is inclicated by a—. The sites of HPFH mutations are indicated by the conventional negative numbers, which arc
the distances in nucleotides from the cap site in the human sequentce. The conserved sequences mentioned in the text that have not yet been shown to be important
binding sites are undertined. The sequences between 550 and 850 in the alignment are not shown to save space, although many matches are in this region. The
following consensus Sequences were used to identify the binding sites tor specific factors: WATAAA for TFIID, CCAAT for CP1, TGACC for CDP, WGATAR
fbrNFEI,GCCTTGlbrNFEB,CACCCIbrCACLBP,ATGGCAAATlbrOTFl,GGGCGGTbrsm,amiTGTGG“HN“(}MrmeeMmmxrcom;“f: A
or T, R = G or A. The first letter of the protein name is over the nucleotide beginning the binding site.

displacement protein, CDP, competes with CP1 for bindingto  HPFH phenotype (Superti-Furga er al., 1988; Mantovani etal.,
the CCAAT sequences (Superti-Furga et al., 1988). However, 1989).

the middle binding site for CDP and the binding site for NFE| Two molecules of NFEI and one of OTF] bind to the human
located between the two CCAAT sequences (position 1224 in sequence between 1136 and 1158 in the alignment (Tsai et al.
Figure 3) are not conserved in the rabbit sequence, indicating  1989). The upstream NFELI site is very well conserved between
cither that these latter binding sites are not required for promoter  rabbit and humans (Figure 3), indicating that it is involved in
function or are used for a species-specific function. The G promoter function. However, the OTFI site in humans is not
at position —117 (two nucleotides 5’ to the distal CCAAT  conserved in rabbits, indicating that it may not be as important.
sequence) is mutated to an A in many individuals with the Although the downstream NFEI site has a one-nucleotide
Greek-type hereditary persistence of feta] hemoglobin (HPFH),  insertion in the rabbit sequence, the human sequence is the site
in which the v-globin gene continues 1o be expressed in adult  of another HPFH mutation (- 175 T to C), thus it has been
life. This G to A transition affects the binding of all three factors implicated in promoter function, at least in humans. Functional
in this region (NFE3, CP1] and CP) and may account for the analysis shows that the — 175 Tto C transition decreases OTF|
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binding but increases NFE1 binding (Mantovani ef al., 1988),
and the increase in y-globin gene expression with the —175
mutation requires NFE1 but not OTF1 (Nicolis et al., 1989).
This lack of involvement of OTF1 fits with the absence of
conservation of this sequence between rabbit and human.
Interestingly, several other HPFH mutations (reviewed in
Stamatoyannopoulos and Nienhuis, 1987) are in a region that
is not conserved in the rabbit sequence (—196 and —198 in
Figure 3).

Many sequences whose functions have not been adequately
tested are also well conserved between the two species. Some
notable examples are the AGGGGCC at position 1270 in the
alignment (between the CCAAT and AATAAA sequences), a
purine-rich sequence between 1010 and 1038, and the sequence
between 911 and 921 that contains a good match to an NFE1
site (all underlined in Figure 3). Several hundred nucleotides
further upstream, the sequences between 477 and 496 have
matches to NFE! sites and enhancer core sequences, and the
sequence 374 —381 has an exact match to the consensus NFE1
site in both species. Although these upstream sequences are not
required for tissue- and stage-specific expression in transgenic
mice (Perez-Stable and Constantini, 1990), their potential

2100 .

function in efficiency of expression has net been tested, and
the patterns of sequence conservation shown in Figure 3 make
them candidates for some functional role. Another clue that the
AGGGGCC sequence at 1270 may be important is that the very
similar sequence GGGGGCC is the site of the HPFH mutation
at —202. The GGGGGCC sequence is also present in rabbit,
but it is offset by 2 nucleotides in this particular alignment
(position 1122 in Figure 3). The C to G transversion at —202
has been proposed to increase the binding of an Spl-like protein
to this sequence (Collins et al., 1984) and thus increase the
expression of the ~-globin gene. A similar protein may bind
at position 1270.

The intergenic regions contain a large number of repeated
DNA sequences in both rabbit and human. The repeated
DNAs are probably transposable elements that have dispersed
throughout the genome. In all cases, the repeats are in different
locations in the rabbit and human S-like globin gene clusters
(Margot er al., 1989). This indicates that the repeats have
inserted separately into these gene clusters, and presumably
throughout the genomes, of rabbits and humans. By examining
the alignments in the intergenic regions, we see several
examples of clean insertions of a repeat in the rabbit sequence

56772 TATGTTGTCTTTCTTCCTCCTTCCTTTGCCTGCACATTGTAGCCCATARTACTA TACCCCATCAAGTGTTCCTGCTCCAAGAAATAGCTTCCTCCTCT% Human

[N N A A A I [ N

2200 . : . H . : . :
56878 ACTTGCCCCAGAACATCTCTGTAARAGAATTTCCTCTT ATC
i [ I Bl O O T R B B

FITTT=1 I N AR
23999 GGTGTTTCCTTTCTTTCTCTTTCCAATATTTATACACTGTAACTCGTATTACTAATTGCCARACATGTATTCCTGCTCTAAGA

FEDE=T1 T ===1 1 11

I ===1 1L a1
ACCTTCCTGC CTT Rabbit

TTCCCATATTTCAGTCAAGATTCATTGCTCACGTATTACTTGTGACCTCTCTTGAC Human
Hornnl

[ e B e e e e R T R A R

24095 CCTGCTCCCAAAAC CTCTTCAGRATAATGCTTCTTTATCCAGTCCTCAATTTCCAGTACAG TTTAGTACTCTCTCATCACTGCTGAGGTCTGTGGAG Rabbit

2300 .
56974 CCCAGCC

Human

24192 CTCAGCCTTGGGGAATTTITATTTTTAATTT T TAAGATTTATTTATT TAATTTAARATTGGTAT TATAGAGAAAGGGAGAGAGAGAGAGGGAGAGAGAGA Rabbit

2400
56981

Human

24292 GAGAGAGAGAGATCTTCCATTCACTGGTTTACTCTACAAATGGCCATATTGGCTAGGCTGAAGCTAGGAGCTTTATCCAGATCCCCTATGTGGGTGGCAA Rabbit

2500
56981

Human

24392 GGACCCACACATTAGGCCATCTTCTGCTGCTTTTCCTGTGCCATTAGCAGGGAGTTGGGTCAGAAGCGGAGCAGCTGGGACACAAACTAGTGCTCATATG Rabbit

2600
56981

BACTTCTCTATACTACCCAAAAAAT CTTTCCAAACCCT Human
PEEE=DEEERERrrerel

24432 AGATGTCAGCATCAGAGGTGGCAGCTTTACCTCGTACGCCACARTACTGGCTCCCTCAGTGAACTTTT TAATG T IGCTGAGGARATTCTTTCCAAACCCT Rabbit

2700 . : . : .
57025 CCCCGACACCATATTTTTATATIT

(1 |=-=m==- TR N
24592 TCCTG

2800
57083
------- PEEEE e A reeeerr re=e 1 I

TTCTTATTTATTYCATGCACACACACACACTCCG
P PE e e
TATATTCATTTTTCACAACTTTACAGCTCTTCTTATGTCACACACACACACACACACACACACGAGCAAATACATACATACACCCCACA Rabbit

Human

TGCTTTATAAGCAATTCTGCCTATTCTCTACCTICTTACAATGCCTACTGTGCCTCATATTARAATTCATCAATGGGCAGARAGARAATATTTA Human
RN R RN AR PErrererr re e b 1l [N

24686 TATATTATGCTTGATAAATATTTCTGTCTATTCTGCAC TAATTTGCAGGCCTACTGTGCCCTGTATCAAATTCTTCTATAGATAATAAGTGGAAATTTT Rabbit

Fig. 4. Insertion of a C repeat into rabbit DNA. The nucleotide sequence of the DNA containing the é- and S3-globin genes was aligned between human and
rabbit, and the portion including and immediately surrounding the C13 repeat is shown. The short direct repeats flanking C13 in the rabbit DNA are underlined.
Virtually all of the rabbit C repeat sequence does not align with the human sequence, whereas the regions flanking it are quite similar (match = 1, mismatch
= —1.5, gap-open penalty = 6.0, gap-extension = 0.2). The positions in the human and rabbit sequences are indicated at the beginning of the corresponding
lines. C13 begins 507 nucleotides 3’ to the poly(A) addition site of the rabbit 4-globin gene.
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that is absent from the human gene cluster. Figure 4 shows the
alignment surrounding a short interspersed repeat in the rabbit
gene cluster, C13, with the human sequence. Although most
of the rabbit C1i3 repeat does not match with the human
sequence, as expected for an insertion, short regions close
to the ends do match. This is observed for several insertions,
and may reflect some requirement for very short regions of
homology at the insertion site. Not only can we see the insertion
sites at nucleotide resolution, but we also can observe proposed
gene conversion events, such as those between the §- and
3-globin genes, and determine their end-points.

Detailed analysis of the alignments revealed some new and
unexpected aspects of the 3-like globin gene clusters. While
analyzing the sequences of the whole gene clusters, a previously
undetected L1Oc repeat was found in the rabbit gene cluster
between the e- and y-globin genes (1.10¢10 in Figure 5). The
alignments were then repeated, focusing on the region between
these two genes. These secondary runs were considerably faster
than those using the whole gene clusters, taking only 24 min
to compute 20 alignments of the 13 500 X 8000 nucleotide
sequences. Several new insights were obtained into the evolution
of the intergenic region between the e- and +y-globin genes.
L10c10 is a shortened example of a class of repeats that can
be up to 8000 nucleotides long. This particular L1Oc¢ is only
150 nucleotides long, and is shortened at both its 5" end (as
usual) and its 3’ end. This is the only known example in
rabbits of an L10c¢ repeat that does not extend through the 3’
untranslated region. It is located in a cluster of inserts of short
C repeats (Figure 5). L10c10 was observed because of the
sequence similarity to an L1 repeat in the human gene cluster
(L.1Hs3) and its similarity to other rabbit L10c repeats. In both
cases the sequence similarity was seen by the alignments given
by this program; the dot-plot analysis was not at a sufficiently
high resolution to observe it in this complex region.

Additional sequence matches in the e—- intergenic regions
allow us better to localize the positions for insertion of the

20 25 30 35 kb
1 | | | 1 | | | | | | | | | I | | 1 |
G
£ L1Hs3 L1Hs4 Al L1Hs5 Y
Human -
Rabbit -
¢3 C456|C7
€ L10el0 y
I 1 I 1 I 1 I 1 1 I 1 I 1
5 10 15 kb

Fig. 5. Map of similarities between rabbit and human sequences in the e —vy
intergenic region. The sequences between the e- and y-globin genes were
searched for similar sequences, and the local alignments found between
the rabbit and human sequences are mapped diagrammatically as shaded
parallelograms. Genes arc shown as open boxes, short repeats are open triangles,
and L1 repeats are filled arrows (some are severely truncated). The genes are
transcribed 5 to 3" left to right. The symbols for the repeats are pointing toward
the A-rich tracts at their 3’ ends.

L1Hs3 and 4 repeats in humans and the set of C repeats in
rabbits. In both cases, the multiple repeats are thought to
represent recursive insertions into the same site (Rogan et al.,
1987; D.E.Krane and R.C.Hardison, unpublished). As
diagrammed in Figure 5, C3—C7, along with L10c10, are
present in a segment of rabbit DNA that has no homolog in
human. Hence, we conclude that the multiple rabbit repeats
inserted at the homolog of human positions 22 450—22 460.
L1Hs3 and 4 interrupt a series of matching segments with the
rabbit DNA, again indicating an insertion within the homologs
to nucleotides 12 63012 660 in the rabbit sequence. The
L1Hs3 sequence is unusual in that it does not extend into the
3’ untranslated region of this class of repeats. However, its 3’
end is interrupted by a 55 nucleotide sequence that is also found
inits 5’ flank. This was originally assigned as the flanking direct
repeat indicating a duplication of the insertion site (Rogan et al.,
1987). However, we have previously argued that this is not
the flanking direct repeat, because the copy of it closest to the
v-globin gene is embedded in a long sequence of homology
to rabbit (Margot et af., 1989). Thus this must represent some
kind of recombinational event beyond that associated with
insertion of a repetitive element.

All these data from the intergenic regions between the e- and
v-globin genes show that this region has sustained many
insertions and recombinations separately in each species.
Clearly, this is a hot-spot for recombinations in the gene cluster,
and the complexity of this pattern can only be seen with
alignments such as those provided by this program.

Comparison with other methods

There exist several useful local similarity programs. SIM, the
program presented here, is the Rotls Royce of them all; it costs
the most to run but has definite advantages in certain situations.

Probably the fastest existing local similarity program is a
variant of BLAST (Altschul er al., 1990). BLAST aligns regions
without allowing the introduction of gaps. Though primarily
designed for database searches, it can be applied to comparing
two long sequences. In just 3 s on our Sund, it discerns the
large-scale features of local similarities in the two S-globin
clusters, revealing such features as corresponding exons of
orthologous and paralogous genes and long matching regions
within L1 repeats. Altschul er al. discuss this application of
BLAST in more detail.

Gotoh (1987) presents a program with the same goals as SIM.
It operates in roughly the same time as our current version of
SIM, though it requires use of secondary storage. Its main
drawback is that it does not detect all high-scoring alignments.
For example, comparing the two é—§-regions (m = —1.5,
g = 6, r = 0.2), it finds the three highest scoring alignments
but misses the next two (i.¢. the third exon of é versus the third
exon of 3, and vice versa).

Probably the most useful current alternative to SIM is
LFASTA (Pearson and Lipman, 1988, Pearson, 1990).
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LFASTA uses a heuristic method to determine likely locations
for significant local alignments and applies a dynamic pro-
gramming algorithm to these regions., When LFASTA was
applied to the 3-globin clusters with its default parameters, it
produced 127 alignments in 45 min on our Sun4. By com-
parison, our current version of SIM required ~ 15 h to pro-
duce 100 alignments. The SIM alignments were generally longer
than the LFASTA alignments; the longest SIM alignment
covered 9875 nucleotides of the human sequence, while the
longest LFASTA alignment covered 2989 nucleotides. In a
number of cases, several LFASTA alignments overlapped to
cover the same region as a single SIM alignment. For example,
LFASTA generated ten alignments of portions of the two ¢
genes. While the higher-scoring of these ten were typically com-
parable to a portion of the single 3490 nucleotide e alignment
from SIM, lower-scoring LFASTA alignments were sometimes
clearly inappropriate. In particular, only one LFASTA align-
ment covered all three exons of ¢, and it did not correctly align
splice junctions and exons.

The SIM alignment covering the y-globin gene promoter,
discussed in detail above, was part of an alignment that
encompassed 2981 nucleotides of the human gene cluster,
extending 1236 nucleotides upstream of the cap site to 260
nucleotides downstream of the coding region. LFASTA covered
this region with three alignments. The highest-score LFASTA
alignment of the region began in precisely the same position
as the SIM alignment and ended in the second intron. The
second alignment picked up at 280 nucleotides downstreamn of
the first alignment and ended 300 nucleotides downstream of
the last pair in the STM alignment. These differences between
SIM and LFASTA probably arise primarily because, with the
default settings, SIM penalizes mismatches more and long gaps
less than does LFASTA. Unfortunately, it is difficult to adjust
the two program’s parameters to make them equivalent since
LFASTA places hidden restrictions on the alignments that it
allows, such as limiting gaps to 30 nucleotides, which cannot
be changed by simply modifying the scoring parameters.
(Indeed, the gaps permitted in LFASTA alignments can be 30
nucleotides long only under unusual circumstances that are
difficult to describe.)

The third highest scoring LFASTA alignment of the y-globin
gene encompassed the regions aligned by the highest-scoring
alignment, extending 180 nucleotides further upstream and 110
nucleotides further downstream. The two alignments typically
paired a given position in the human sequence with different
positions in rabbit. However, the two LFASTA alignments were
identical to each other and to the SIM alignment for a stretch
of ~450 nucleotides from position 892 in Figure 3 to a position
lying between the cap site and the start of the coding sequence.
Downstream of that position, the third LFASTA alignment
seemed completely inappropriate. The first LFASTA alignment
matched the NFE1 sites at positions 374 —381 in Figure 3,
but missed the interesting matches at positions 477—496.

Conversely, LFASTA’s third alignment detected the latter
region but missed the former. Because LFASTA limits gaps
to 30 nucleotides, there is no way to set its parameters to
simultaneously align both regions (note the 34 nucleotide gap
in rabbit at 395—-429).

In summary, letting SIM run overnight on a moderately
priced piece of equipment saves the user from the need to spend
time splicing together overlapping alignments of the same region
and resolving alignment conflicts. Moreover, arbitrarily long
gaps are permitted in alignments. Finally, all factors controlling
potential alignments and their scores are explicit and can be
modified as appropriate.

Discussion

Previous dynamic-programming algorithms for local similarity
require space proportional to the product of the sequence
lengths. This paper presents an algorithm that uses only space
proportional to the longer sequence’s length. Recent algorithmic
improvements (X.Huang and W.Miller, Advances in Applied
Mathematics in press) have brought the time requirements for
this approach in line with those for space-intensive dynamic-
programming algorithms. This allows our software to align long
sequences on a small computer. In the following, we mention
a couple of points about use of the software.

A little care is needed when choosing scoring parameters.
Experience shows that if excessively low penalties are used,
for example, m = —0.5, ¢ = 1.0 and r = 0.3, then SIM
generates many long alignments of weak similarity. If mismatch
weights v(a,b) are positive on average, then the program always
produces global alignments, so it is important that
non-conservative substitutions be given negative scores.

It is difficult to determine a priori how large k should be.
Our current implementation of SIM computes later alignments
very quickly, so k can be set very large without significantly
decreasing the efficiency of the program. For cxample, the
program takes 10 h to find the best alignment of the 3-globin
clusters, and an additional 5 h to find the next 99 best. In
practice, we simply pick a comfortably large & and discard
alignments once we start getting, for example, paired (AT)"
regions. One referee suggested that the program should stop
when alignment scores reach the level that would be expected
in comparing random sequences, but we do not know how to
guarantee this, Indeed, the issue of statistical significance is an
important topic not addressed here; it would be useful to extend
SIM to produce an estimation of the statistical significance of
each alignment, as done by Pearson and Lipman (1988).
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