Assignment \#1

1. (a) Recover the marginals that were used to create the BLOSUM62 matrix using only that matrix.
(b) Would this method work for any log-odds matrix?
2. (a) Recover the joint probability matrix $P=\left(p_{i j}\right)$ of "real alignments" that was used to create BLOSUM62 (the H_{1} hypothesis).
(b) What is the expected number of mutations at each position under H_{1} ?
(c) What is it under H_{0} ?
3. (a) Use figure 80 on p .346 in Dayhoff et al. to build the jump matrix Q.
(b) Use the BLOSUM62 marginals computed above and the method showed in class to compute a new transition matrix corresponding to a distance of 1 PAM.
4. (a) Using this new "PAM1" matrix what is the expected number of mutations at a distance of 159 PAMs? Compare with Table 23 on p. 351 of Dayhoff et al.
(b) Construct a new PAM160 or PAM250 matrices and compare to the original ones.
5. Exrecises 2.5 \& 2.6 from Durbin et al. (modified slightly):
(a) Show that the number of ways of intercalating two sequences of lengths n and m to give a single sequence of length $n+m$, while preserving the order of the symbols in each, is $\binom{m+n}{m}$.
(b) By taking alternating symbols from the upper and lower sequences in an alignment, then discarding the gap characters, show that there is a one-to-one correspondence between gapped alignments of the two sequences and intercalated sequences of the type described above. Note: for this procedure to work you should rule out alignments with ${ }_{-B}^{A-}$ (but ${ }^{-A}$ - is OK).
(c) How many different such (i.e. subject to the rule above) global alignments are there?
