
CS 624: Numerical Solution of Differential Equations
Spring 2006

Problem Set 1

Handed out: Wed., Feb. 1.

Due: Fri., Feb. 10 in lecture.

1. Consider two LMS methods in standard form given by (1.2.11) in the text. Suppose
their orders of accuracy are p1, p2. WLOG, assume they have the same value of s.
Their sum, suitably rescaled to ensure that the leading αj is 1, is also a LMS method.
Let p be the order of the resulting LMS method.

(a) Show that p ≥ min(p1, p2).

(b) Show that if p1 �= p2, then p = min(p1, p2).

(c) Give an example to show that if p1 = p2, then it may be possible that p >
min(p1, p2). [Hint: there are two well known methods such that p1 = p2 = 1 but
p = 2.]

2. Let
(x1, y1), . . . , (xn, yn), (w1, z1)

be a sequence of n + 1 real points in the plane such that x1 < x2 < · · · < xn < w1.
Assume n > 0. Show that there exists a unique polynomial p of degree at most n such
that p(xi) = yi for i = 1, . . . , n and p′(w1) = z1. Note: this theorem is used to establish
the validity of the interpolation-based definition of the BDF family.

[Hint: As in lecture, first show uniqueness, then call upon linear algebra to conclude
existence. To show uniqueness, first argue that p′ is uniquely determined. In the
uniqueness proof, Rolle’s theorem will help you find n − 1 roots of the derivative of
p − q, and there is already another root given.]

3. One difficulty with finite difference methods for IVP’s is that they return approx-
imations for u only at discrete time steps. A common technique for obtaining an
approximation to u at other time-values is to interpolate between discrete points.

Suppose tn = nk, where k is a fixed stepsize. Suppose v(t) is defined via linear
interpolation, i.e., for t ∈ [tn, tn+1], define

v(t) =
t − tn

k
vn+1 +

tn+1 − t

k
vn

and use the approximation u(t) ≈ v(t).

Determine the amount of additional error introduced by this interpolation (additional
beyond the global truncation error of the LMS method) as a function of k. Explain
why the error introduced by this interpolation formula is acceptable for AB1 and AB2
but probably not for AB-s when s ≥ 3.
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4. Consider a light body orbiting a heavy body located at the origin lying in a plane. The
equation of motion is

d2x

dt2
= − x

‖x‖3

where x(t) ∈ R2 is the position of the light body. (The norm in the denominator is
the 2-norm.) Convert this to a first-order system. (You should end up with a total of
four dependent variables.) Write AB1 and AB2 algorithms in Matlab and apply them
to this problem. Set up initial conditions in which the light body starts at (1, 0) and
is moving with velocity (0, 1). Hand in plots of the trajectories of the bodies for the
same initial condition for both AB1 and AB2, using two or three different time-step
choices. Note: initialize AB2 with a single step of AB1.

Try an assortment of time-steps for AB1 and AB2. For each algorithm choice and each
time step choice, determine the x-coordinate of the light body when it makes one full
revolution (i.e., when the y-coordinate is 0 and the x-coordinate is positive). Note that
there will probably not be an exact step when it lands on the positive x-axis again after
t = 0, so you will need to determine this position using piecewise linear interpolation.
If the system were behaving according to Newton’s laws, the x-coordinate would be
exactly 1 after one cycle (i.e., the body would return to its original point). Determine
experimentally how the x-coordinate after one revolution depends on the time-step
used for AB1 and AB2.

Turn in listings of your m-files, a paragraph of conclusions and at least one interesting
plot.
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