
1

Concurrency Support

Ken Birman

Our topic…

To get high performance, distributed systems
need to achieve a high level of concurrency

As a practical matter: interleaving tasks, so that
while one waits for something, another can run

Multi-core processors are about to make this
a central focus of the OS community after a
period of relative inattention
So: how can an OS help the developer build
concurrent applications that perform well?

Why threads?

Emerged as an early issue with UNIX!
Consider challenge of building a program for
a single-processor machine that

Accepts input from multiple I/O sockets
Needs to handle timeouts
May launch internal threads
May receive interrupts or signals
May want to do some blocking I/O

Using cthreads (no kernel thread support)

Why is this a problem?

In UNIX blocking I/O blocks the whole
address space! So… any I/O leaves
cthreads blocked!
Options?

Select system call only understands I/O
channels and timeout, not signals or other
kinds of events
UNIX asynchronous I/O is hard to use

Classic solution?
Go ahead and build a multithreaded
application, but threads never do blocking I/O
Connect each “external event source” to a
hand-crafted “monitoring routine”

Often will use signals to detect that I/O is
available
Then package the event as an event object and
put this on a queue. Tickle the scheduler if it was
asleep
Scheduler dequeues events, processes them one
by one… forks lightweight threads as needed

Resulting architecture

Application-level
threads

Scheduler

External event detector uses UNIX
signals, select() to sense events

Event queue

2

Problems with this?

Only works if all the events show up as
signals
Depends on UNIX not “losing” signals
Often must process a signal and also do a
select call to receive an event
Scheduler needs a way to block when no
work to do (probably select()) and must be
sure that signal handlers can wake it up

Classic issues

Threads that get forked off, then block for
some reason

Address space soon bloats, causing application to
crash

Program is incredibly hard to debug, some
problems seen only now and then
Outright mistakes because C/C++ don’t
support “monitor style” synchronization

(Easier in Java, C#)

Bottom line?

Concurrency bugs are incredibly common and
very hard to track down and fix

We want our cake but not the calories

Programmers find concurrency unnatural
Try to package it better?
Identify software engineering paradigms that can
ease the task of gaining high performance

Hauser et. al. case study

Their focus is on how the world’s best
hackers actually use threads

They learned the hard way
Maybe we can learn from them

Paradigms of thread usage

Defer work
General pumps
Slack processes
Sleepers
One-shots

Deadlock avoidance
Rejuvenation
Serializers
Encapsulated fork
Exploiting parallelism

Defer work

A very common scenario for them
Client sees snappy response…
something client requested is fired off
to happen in the background

Examples: forking off a document print
operation, or code that updates window
Issue? What if thread hangs for some
reason. Client may see confusing behavior
on a subsequent request!

3

Pumps

Components of producer-consumer
pipelines that take input in, operate on
it, then output it “downstream”
Value is that they can absorb transient
rate mismatches
Slack process: a pump used to explicitly
add delay, employed when trying to
group small operations into batches

Sleepers, one-shots

These are threads that wait for some
event, then trigger, then wait again
Examples:

Call this procedure every 20ms, or after
some timeout
Can think of device interrupt handler as a
kind of sleeper thread

Deadlock avoiders

Thread created to perform some action
that might have blocked, launched by a
caller who holds a lock and doesn’t
want to wait
A fairly dangerous paradigm…

Thread may be created with X true, but by
the time it executes, X may be false!
Surprising scheduling delays a big risk here

Task rejuvenation

A nasty style of thread
Application had multiple major
subactivities, such as input handler,
renderer. Something awful happened.
So create a new instance and pray

Seems to invite “heisenbugs”

Aside: Bohr-bugs and
Heisenbugs

Bruce Lindsey, refers to models of the atom
A Bohr nuclear was a nice solid little thing.
Same with a Bohr-bug. You can hit it
reproducibly and hence can fix it
A Heisenbug is hard to pin down: if you
localize an instance, the bug shifts elsewhere.
Results from non-deterministic executions,
old corruption in data structures, etc….
Some thread paradigms invite trouble!

Others

Serializers: a queue, and a thread that
removes work from it and processes
that work item by item

Used heavily in SEDA
Concurrency exploiters: for multiple
CPUs
Encapsulated forks: threads packaged
with other paradigms

4

Threads considered marvelous

Threads are wonderful when some
action may block for a while

Like a slow I/O operation, RPC, etc

Your code remains clean and “linear”
Moreover, aggregated performance is
often far higher than without threading

Threads considered harmful

They are fundamentally non-
deterministic, hence invite Heisenbugs
Reentrant code is really hard to write
Surprising scheduling can be a huge
headache
When something “major” changes the
state of a system, cleaning up threads
running based on the old state is a pain

SEDA paradigm

Tries to replace most threads with:
Small pools of threads
Event queues

Idea is to build a pipelined architecture
that doesn’t fork threads dynamically

Classic threading paradigm
and a performance issue

Event-oriented paradigm
Staged, Event Driven
Approach (SEDA)

A SEDA stage

5

SEDA performance Criticisms of SEDA

It can still bloat, by having event
queues get very large
Demands a delicate match of
processing power (basically, stages to
the right need to be faster than stages
to the left)
Some claim that Haboob didn’t work as
asserted in this paper…

Background

SEDA was developed by Matt Welsh
Now at Harvard
Matt ran afoul of some of the über-hackers
of the systems world
Huge fight ensued. Matt ultimately shifted
to work on sensor networks (safer crowd)

Comments that follow came from one
of these angry über-hackers

“Why SEDA sucks”
(from an anonymous über-hacker)

First, if you read between the lines, the
paper’s own numbers show how much SEDA
sucks.
For example, it shows comparable throughput
to Flash where flash has half the number of
file descriptors, which means he's at least
twice as slow as flash.

(Since usually performance of these systems
scales relatively linearly with file descriptors.)

“Why SEDA sucks”
(from an anonymous über-hacker)

The paper shows graphs like CDFs of
response time for clients serviced, when
SEDA was dumping most requests (and
hence they weren't showing up in the graph),
while the other servers were serving way
more clients.
So yeah, SEDA's latency is lower than other
servers if SEDA serves fewer clients and thus
has lower throughput. And SEDA's
throughput is comparable to other servers if
you cut the other servers' concurrency.

“Why SEDA sucks”
(from an anonymous über-hacker)

But on top of that the comparison is still dishonest,
because the other servers are production servers
with logging and everything.
SEDA lacks a bunch of necessary facilities that would
presumably decrease its performance if implemented.
The authors annoyed some members of the systems
community by giving talks saying, "You might ask if
the use of Java would put SEDA at a performance
disadvantage. It doesn't because fortunately I'm a
very, very good programmer."
Not a good move.

6

“Why SEDA sucks”
(from an anonymous über-hacker)

“Almost as embarrassing as the performance and the complete
failure to solve the stated problem (namely cnn.com's overload
on September 11, 2001, which he never demonstrated SEDA
could fix) is the fact that the authors completely ignored the
related work from Mogul and Ramakrishnan on eliminating
receive livelock.”
That work appeared in Journal form in 1997, and earlier in
conference form).

They made a strong case for dropping events as early as possible,
eliminating most queues, and processing events all the way
through whenever you can.
Viewed in this light, SEDA should not have been published (years
later) without even attempting to rebut their argument.

Threads: What next?

Language community is exploring threads
with integrated transactional rollback…

Idea: thread is created for parallelism
It tracks data that was changed (undo list)
At commit point, check for possible concurrent
execution by some other thread accessing same
data. If so, roll back, retry

Concerns? Many. Recalls Argus system
(MIT) which used threads, transactions on
abstract data types…. Life gets messy!

Bottom line?

Threads?
Events?
Transactions? (With top-level actions,
orphan termination, nested commit???)
A mixture?

