Operating System Kernels

Ken Birman

(borrowing some content from
Peter Sirokman)

= Early kernel: a library of device drivers, support for
threads (QNX)

= Monolithic kernels: Unix, VMS, OS 360...
= Unstructured but fast..
= Over time, became very large
= Eventually, DLLs helped on size

= Pure microkernels: Mach, Amoeba, Chorus...
= OS as a kind of application

= Impure microkernels: Modern Windows OS
= Microkernel optimized to support a single OS
= VMM support for Unix on Windows and vice versa

= How big does it need to be?
= With a mkernel protection-boundary
crossing forces us to
= Change memory -map
= Flush TLB (unless tagged)

= With a macro-kernel we lose structural
protection benefits and fault-containment

= Debate raged during early 1980's

= The Performance of pu-Kernel-Based Systems
(Hartig et al. 16th SOSP, Oct 1997)
= Evaluates the L4 microkernel as a basis for a full
operating system
= Ports Linux to run on top of L4 and compares
performance to native Linux and Linux running on
the Mach microkernel

= Explores the extensibility of the L4 microkernel

ﬂ' Summary of Second Paper

= The Flux OSKit: A Substrate for Kernel and
Language Research (Ford et al. 16th SOSP,
1997)
= Describes a set of OS components designed to be
used to build custom operating systems
= Includes existing code simply using “glue code”

= Describes projects that have successfully used the
OSKit

= L4 seeks to validate idea that a mkernel
can support a full OS without terrible
cost penalty
= Opened the door to architectures like the

Windows one

= Flux argues that we can get desired
structural benefit in a toolkit and that
runtime mkernel structure isn't needed

ﬁ Microkernels

= An operating system kernel that
provides minimal services

= Usually has some concept of threads or
processes, address spaces, and
interprocess communication (IPC)

= Might not have a file system, device
drivers, or network stack

Monolithic and Micro-kernels

Multiple User Address Spaces Multiple User Address Spaces

Network
User User User File Stack
Process Process Process System

Kernel Address Space Kernel Address Space
[irc]
iPC File System
Process Management] [Network Stack] Process Management

Synchronization

Monolithic Kernel Micro Kernel

= Flexibility: allows multiple choices for any
service not implemented in the microkernel
= Modular design, easier to change
= Stability:
= Smaller kernel means it is easier to debug
= User level services can be restarted if they fail

= More memory protection

Context Switches

Multiple User Address Spaces Multiple User Address Spaces

Process Process
ﬂ 1
2 \
)

Kermel Address Space \\ b 1y Ja N
i Kernel Address Space [irc]
File System)
Process Management| [Network Stack Process Management

Synchronization

Monolithic Kernel Microkernel

= Performance

= Requires more context switches

= Each “system call” must switch to the kernel
and then to another user level process

= Context switches are expensive
= State must be saved and restored
= TLB is flushed

Paper Goals

= Is it possible to build an OS on a Microkernel
that performs well?

Goal is to prove that it is

Port Linux to run on top of L4 (a microkernel)

= Compare performance of L4Linux to native Linux

= Since L4Linux is a “complete” operating system, it
is representative of microkernel operating systems

ﬁ More Paper Goals

= Is this actually useful? Is the

microkernel extensible?

= Implemented a second memory manager
optimized for real-time applications to run
alongside Linux on L4

= Implemented an alternative IPC for
applications that used L4 directly (requires
modifying the application)

= Operations:

= The kernel starts with one address space, which is
essentially physical memory

= A process can grant, map, or unmap pages of size
2" from its own virtual address space

= Some user level processes are pagers and do
memory management (and possibly virtual
memory) for other processes using these
primitives.

The L4 Microkernel

= Provides communication between address
spaces (inter-process communication or IPC)

= Page faults and interrupts are forwarded by
the kernel to the user process responsible for
them (i.e. pagers and device drivers)

= On an exception, the kernel transfers control
back to the thread’s own exception handler

= Linux source has two cleanly separated parts
= Architecture dependent
= Architecture independent
= In L4Linux
= Architecture dependent code is replaced by L4
= Architecture independent part is unchanged
= L4 not specifically modified to support Linux

= Linux kernel as L4 user service

= Runs as an L4 thread in a single L4
address space

= Creates L4 threads for its user processes

= Maps parts of its address space to user
process threads (using L4 primitives)

= Acts as pager thread for its user threads

= Has its own logical page table

= Multiplexes its own single thread (to avoid
having to change Linux source code)

= The statically linked and the shared C libraries
are modified

= System calls in the library call the kernel using L4
IPC

= For unmodified native Linux applications
there is a “trampoline”
= The application traps to the kernel as normal

= The kernel bounces control to a user-level
exception handler

= The handler calls the modified shared library

& A note on TLBs

= Translation Lookaside Buffer (TLB)
caches page table lookups

= On context switch, TLB needs to be
flushed

= A tagged TLB tags each entry with an
address space label, avoiding flushes

= A Pentium CPU can emulate a tagged
TLB for small address spaces

= A significant portion of the performance
penalty of using a microkernel comes from
the added work to reload the page table into
the TLB on every context switch

= Since L4 runs in a small address space, it
runs with a simulated tagged TLB

= Thus, the TLB is not flushed on every context
switch

= Note that some pages will still be evicted —
but not as many

= L4Linux is binary compatible with native
Linux from the applications point of
view.

Performance — The

= Mach 3.0

= A “first generation” microkernel

= Developed at CMU

= Originally had the BSD kernel inside it
= L4

= A “second generation” microkernel
= Designed from scratch

ﬂ' Performance — Benchmarks

= Compared the following systems
= Native Linux
= L4Linux
= MkLinux (in-kernel)
= Linux ported to run inside the Mach microkernel
= MKLinux (user)

= Linux ported to run as a user process on top of
the Mach microkernel

Performance -
Microbenchmarks

b proces]
map]

2proc confext swich [lar]
&pocconentsvich]

i] T - 88

(] ML in-keme)
DT MLinoe (ser)

7 3 1 5 6 1 8 8 00 om0 oW

Figure 6: Intbench results, normalized to rative Limu. ashorter bar fad]is a latency measurement,
e s o i

Performance -

ﬁ Macrobenchmarks

= AIM Benchmark Suite VII simulates “different
application loads” using “Load Mix Modeling”.

= This benchmark has fallen out of favor but
included various compilation tasks

= Tasks are more representative of development in
a systems lab than production OS in a web farm
or data center

Performance -
Macrobenchmarks

AIM Suito-T Ronchamak « J6b3 por Maato

3oy por Minuto

6 0
AMemarcdiad

Figure 9: AIM Multiuser Benchmark Suite VI Jobs completed per
minute depending on AIM load units. (133 MHz Pentiumn)

= L4Linux is 5% - 10% slower than native
for macrobenchmarks

= User mode MkLinux is 49% slower
(averaged over all loads)

= In-kernel MkLinux is 29% slower
(averaged over all loads)

= Co-location of kernel is not enough for
good performance

= If performance suffers, there must be other
benefits — Extensibility
= While Linux pipes in L4Linux are slower than in
native Linux, pipes implemented using the bare L4
interface are faster
Certain primitive virtual-memory options are faster
using the L4 interface than in native Linux
Cache partitioning allows L4Linux to run
concurrently with a real-time system with better
timing predictability than native Linux

Microkernel Con: Revisited

$ Again

= The Linux kernel was essentially
unmodified

= Results from “extensibility” show that
improvements can be made (e.g. pipes)

= If the entire OS were optimized to take
advantage of L4, performance would
probably improve

= Goal Demonstrated

Research group wanted to experiment with
microkernel designs

Decided that existing microkernels (Mach)
were too inflexible to be modified

Decided to write their own from scratch

In order to avoid having it become inflexible,
built it in modules

Invented an operating system building kit!

& The Flux OSKit

= Writing Operating Systems is hard:
= Relevant OSs have lots of functionality:
= File system
= Network Stack
= Debugging
= Large parts of OS not relevant to specific
research

= Not cost effective for small groups

= Many OS projects attempt to leverage
existing code
= Difficult
= Many parts of operating systems are
interdependent
= E.g. File system depends on a specific
memory management technique

= E.g. Virtual memory depends on the file
system

= Hard to separate components

File System | _——| Memory Manager

> malloc()

b

swap() </“ 7

N Locks /

|
lock() ¥~
\\ unlock()

= OSKit is not an operating system

= OSKit is a set of operating system
components

= OSKit components are designed to be as self-
sufficient as possible

= OSKit components can be used to build a
custom operating system — pick and choose

the parts you want — customize the parts you
want

ﬂ' Diagram of OSKit

[Native OSKit Gade
—

Encapsulaied Legacy Cote Client Operating System or

Language Run-Time System
Executable
Loading
File System
FreeBSD NeiBSD Reader Address Map | | FreeBsD
Hetworking File System = Manager Wiath Library
is
Glue Glue Paritioning
Generic Device Driver Support Minimal G Library
Linux FreeBSD Ry
Debuggi
Drivers Drivers —
Lisi-based
Linux Glue. FreeBSD Glue Memory Manager

[eneric Device Driver Support__| I
Kemel Suppart SMP

Example OS using OSKit

My Kernel

My C library

My Memory Manager

ﬂ Another Example OS
| = Bootstrapping

= Provides a standard for boot loaders and
operating systems
= Kernel support library
= Make accessing hardware easier
= Architecture specific

L = E.g. on x86, helps initialize page translation

tables, set up interrupt vector table, and
I interrupt handlers

= Memory Management Library

= Debugging Support
= Supports low level features

= Can be debugged using GDB over the serial port
= Debugging memory allocation library
= Device Drivers

= Allows tracking of memory by various traits, such
as alignment or size

= Minimal C Library
= Designed to minimize dependencies
= Results in lower functionality and performance
= E.g. standard 1/0 functions don’t use buffering

= Taken from existing systems (Linux, FreeBSD)
= Mostly unmodified, but encapsulated by “glue”
code — this makes it easy to port updates

ﬂ' Two more OSKit Components

= Network Stack
= Taken from FreeBSD and “encapsulated”

i File Syst: Memory Manager
using glue code e system
. open() Client OS Kernel
= File System close()

read) P malloc()

= Taken from NetBSD and “encapsulated” (mallo)0
using glue code

ﬁ OSKit Implementation

= Libraries
= To the developer, the OSKit appears as a
set of libraries that can be linked to
programs
= Therefore, easy to use

= Most operating systems are modular,
but this does not make them separable
into components

= Modules will assume and depend on the
implementation specifics of other
modules

= In OSKit components are wrapped in
“glue code” to make them independent
of other components

fake_process_structure Glue Code

<IN
/I\i— malloc() // BSD malloc
curproc® // Pointer to current process
s

malloc() { BSD File System

(*malloc)() #/ Function pointer from client OS

-

= Overridable functions

= E.g. all device drivers use a function
fdev_mem_alloc to allocate memory

= The client OS (the OSKit user) must
provide an implementation of this
depending on the memory manager used
by the OS being built

= The default implementation uses the OSKit
memory manager

ﬂ' More “glue code”

= The file system must use block device drivers

= Yet the file system can't know what the block
device driver code will be

= Device drivers can return pointers to
interfaces, which can be passed to the file
system

= The file system is bound to a block device
driver at run time

= Interfaces use the COM standard

= Like a Java object, a COM interface has
known methods that can be invoked

= The internal state is hidden

= Each block device driver can implement
a common COM interface, allowing all
drivers to look the same to the file
system

ﬁ Execution Environment

= It is impossible to turn all components
into black boxes that will automatically
work in all environments

= The absolute basic needs of a
component, a file system for example,
is abstracted as specified execution
environment that the developer must
follow

= The execution environment specifies
limitations on the use of the component

Is the component reentrant?

Must certain functions in the interface be

synchronized?

Can the execution of the component be

interrupted?

= Example: While the file system is not
designed to be used on a multiprocessor
system, the execution environment can be
satisfied using locks to synchronize its use

= The OSKit provides abstract interfaces to its
components

= The OSKit also provides implementation specific
interfaces to allow the user to have more control over
the component

= Key: these specialized interfaces are optional

= E.g. the memory manager can be used as a simple
malloc, or it can manipulate physical memory and the
free list directly

= Components can offer multiple COM interfaces to do
this

Interfaces presented by the OSKit are implemented

as “glue code”

= This glue code makes calls to the imported legacy
code, and makes modifications as needed to emulate
the legacy code’s original environment

= The glue code also accepts calls from the legacy code
and translates them back to the interface offered

= Thus once two components are encapsulated, their

interfaces can be joined together seamlessly

ﬂ' The Obligatory Benchmark

= Measured TCP bandwidth and latency

Receiver:
Linux FreeBSD OSKit
Sender:
Linux 724 71.2 713
FreeBSD | 60.0 78.6 78.7
OSKit 56.4 68.3 68.2

Table 1: TCP bandwidth in MBit/s measured with t tcp between
two Pentium Pro 200MHz PCs connected by 100Mbps Ethernet.

= FreeBSD can use discontinuous buffers,

Application

-_— BSD socket interface
C library

-— oskit_socket COM interface
FreeBSD TCP/IP

=1 fdev_sthemst, oskit_nstio,

Linux Ethernet oskit_bufio COM interfaces

Hardware

Pigure 3: Structure of the ttop and rtep example kernels.

ﬂ Latency

Server:
Linux FreeBSD OSKit
Client:
Linux 152 168 180
FreeBSD 168 197 210
OSKit 180 210 222

Table 2: TCP one-byte round-trip time in psec measured with
rtcp between two Pentium Pro 200MHz PCs connected by
100Mbps Ethernet.

= SML is a functional programming language

= Goal: to model concurrency as continuations in high
level programming languages

= This requires ML and its compiler to be able to
manipulate context switching — difficult if not
impossible on a standard OS

= ML/OS constructed by 2 people over a semester
using OSKit

= Other projects with similar goals have not succeeded
(at the time)
= Fox project at CMU
= Programming Principles group at Bell Labs

= SR — a language for writing concurrent
programs
= Other attempts abandoned
= Java/PC
= Given a Java Virtual Machine and OSKit,
took three weeks

= Sun’s version took much longer to build
since it was written mostly from scratch in
Java

= A Microkernel is an architecture for operating
systems designed to be flexible

= OSKit is a tool for making operating systems

= OS-s built with OSKit may or may not be
microkernel

= OSKit gives greater flexibility than a
microkernel, since even microkernels force

some concepts (threads, IPC) onto the overall
system

10

