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The Unix Fast File System

Berkeley Unix (4.2BSD)
Low-level index nodes (inodes) 
correspond to files
Reduces seek times by better 
placement of file blocks

Tracks grouped into cylinders
Inodes and data blocks grouped together
Fragmentation can still affect performance
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File system on disk

......
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blocks in use
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File representation
file size

link count

access times

...

data blocks

indirect block

double indirect

triple indirect
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Inodes and directories

Inode doesn't contain a file name
Directories map files to inodes

Inode can be in multiple directories
Low-level file system doesn't distinguish 
files and directories
Separate system calls for directory 
operations
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FFS implementation

Most operations do multiple disk writes
File write: update block, inode modify time
Create: write freespace map, write inode, 
write directory entry

Write-back cache improves performance
Benefits due to high write locality
Disk writes must be a whole block
Syncer process flushes writes every 30s
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FFS crash recovery

Asynchronous writes are lost in a crash
Fsync system call flushes dirty data
Incomplete metadata operations can cause 
disk corruption (order is important)

FFS metadata writes are synchronous
Large potential decrease in performance
Some OSes cut corners
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After the crash

Fsck file system consistency check
Reconstructs freespace maps
Checks inode link counts, file sizes

Very time consuming
Has to scan all directories and inodes
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The Log-Structured
File System

CPU speed increases faster than disk 
speed
Caching improves read performance
Little improvement in write performance

Synchronous writes to metadata
Metadata access dominates for small files
e.g. Five seeks and I/Os to create a file
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LFS design

Increases write throughput from 5-10% 
of disk to 70%

Removes synchronous writes
Reduces long seeks

Improves over FFS
"Not more complicated"
Outperforms FFS except for one case
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LFS in a nutshell

Boost write throughput by writing all 
changes to disk contiguously

Disk as an array of blocks, append at end
Write data, indirect blocks, inodes together
No need for a free block map

Writes are written in segments
~1MB of continuous disk blocks
Accumulated in cache and flushed at once
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Log operation
Kernel buffer cache

inode blocks data blocks

active segment

log

log head log tail

Disk
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Locating inodes

Positions of data blocks and inodes 
change on each write

Write out inode, indirect blocks too!

Maintain an inode map
Compact enough to fit in main memory
Written to disk periodically at checkpoints
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Cleaning the log

Log is infinite, but disk is finite
Reuse the old parts of the log

Clean old segments to recover space
Writes to disk create holes
Segments ranked by "liveness", age
Segment cleaner "runs in background"

Group slowly-changing blocks together
Copy to new segment or "thread" into old
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Cleaning policies

Simulations to determine best policy
Greedy: clean based on low utilisation
Cost-benefit: use age (time of last write)

Measure write cost
Time disk is busy for each byte written
Write cost 1.0 = no cleaning

benefit
cost

(free space generated)*(age of segment)
cost

=
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Greedy versus 
Cost-benefit
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Cost-benefit segment 
utilisation
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LFS crash recovery

Log and checkpointing
Limited crash vulnerability
At checkpoint flush active segment, inode 
map

No fsck required
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LFS performance

Cleaning behaviour better than 
simulated predictions
Performance compared to SunOS FFS 

Create-read-delete 10000 1k files
Write 100-MB file sequentially, read back 
sequentially and randomly

21Advanced file systems



Small-file performance
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Large-file performance

23Advanced file systems



Overview of talk

Unix Fast File System
Log-Structured System
Soft Updates
Conclusions

24Advanced file systems



Soft updates

Alternative mechanism for improving 
performance of writes

All metadata updates can be asynchronous
Improved crash recovery
Same on-disk structure as FFS
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The metadata update 
problem

Disk state must be consistent enough to 
permit recovery after a crash

No dangling pointers
No object pointed to by multiple pointers
No live object with no pointers to it

FFS achieves this by synchronous writes
Relaxing sync. writes requires update 
sequencing or atomic writes
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Design constraints

Do not block applications unless fsync
Minimise writes and memory usage
Retain 30-second flush delay
Do not over-constrain disk scheduler

It is already capable of some reordering
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Dependency tracking

Asynchronous metadata updates need 
ordering information

For each write, pending writes which 
precede it

Block-based ordering is insufficient
Cycles must be broken with sync. writes
Some blocks stay dirty for a long time
False sharing due to high granularity
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Circular dependency 
example

directory
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inode #35

inode block
a.txt 89
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Circular dependency 
example

create file d.txt
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inode #33

inode #34

inode #35

a.txt 89

b.pdf 32

366

34

c.doc

d.txt

...

Inode must be initialised before directory entry is added



Circular dependency 
example

remove file b.pdf
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366
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...

Directory entry must be removed before inode is deallocated



Update implementation

Update list for each pointer in cache
FS operation adds update to each affected 
pointer
Update incorporates dependencies

Updates have "before", "after" values 
for pointers

Roll-back, roll-forward to break cycles
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Circular dependency 
example
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inode #35
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366
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...

roll back 
remove

Rollback allows dependency to be suppressed



Soft updates details

Blocks are locked during roll-back
Prevents processes from seeing stale cache

Existing updates never get new 
dependencies

No indefinite aging

Memory usage is acceptable
Updates block if usage becomes too high
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Recovery with soft 
updates

"Benign" inconsistencies after crashes
Freespace maps may miss free entries
Link counts may be too high

Fsck is still required
Need not run immediately
Only has to check in-use inodes
Can run in the background
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Soft updates performance

Recovery time on 76% full 4.5GB disk
150s for FFS fsck versus 0.35s ...

Microbenchmarks
Compared soft updates, async writes, FFS
Create, delete, read for 32MB of files

Soft updates versus update logging
Sdet benchmark of "user scripts"
Various degrees of concurrency
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Create and delete 
performance

Create files Delete files

37Advanced file systems



Read performance
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Overall create traffic
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Soft updates versus 
logging
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Conclusions

Papers were separated by 8 years
Much controversy regarding LFS-FFS 
comparison

Both systems have been influential
IBM Journalling file system
Ext3 filesystem in Linux
Soft updates come enabled in FreeBSD
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