
Advanced file systems:
LFS and Soft Updates

Ken Birman
(based on slides by Ben Atkin)

Overview of talk

Unix Fast File System
Log-Structured System
Soft Updates
Conclusions

2Advanced file systems

The Unix Fast File System

Berkeley Unix (4.2BSD)
Low-level index nodes (inodes)
correspond to files
Reduces seek times by better
placement of file blocks

Tracks grouped into cylinders
Inodes and data blocks grouped together
Fragmentation can still affect performance

3Advanced file systems

File system on disk

......

4Advanced file systems

freespace map
inodes and
blocks in use

super block
disk layout

inodes
inode size <
block size

data blocks

File representation
file size

link count

access times

...

data blocks

indirect block

double indirect

triple indirect

5Advanced file systems

data

data

data

data

...

...

...

data

data

data

data

...

...

data

data

data

data

...

...

Inodes and directories

Inode doesn't contain a file name
Directories map files to inodes

Inode can be in multiple directories
Low-level file system doesn't distinguish
files and directories
Separate system calls for directory
operations

6Advanced file systems

FFS implementation

Most operations do multiple disk writes
File write: update block, inode modify time
Create: write freespace map, write inode,
write directory entry

Write-back cache improves performance
Benefits due to high write locality
Disk writes must be a whole block
Syncer process flushes writes every 30s

7Advanced file systems

FFS crash recovery

Asynchronous writes are lost in a crash
Fsync system call flushes dirty data
Incomplete metadata operations can cause
disk corruption (order is important)

FFS metadata writes are synchronous
Large potential decrease in performance
Some OSes cut corners

8Advanced file systems

After the crash

Fsck file system consistency check
Reconstructs freespace maps
Checks inode link counts, file sizes

Very time consuming
Has to scan all directories and inodes

9Advanced file systems

Overview of talk

Unix Fast File System
Log-Structured System
Soft Updates
Comparison and conclusions

10Advanced file systems

The Log-Structured
File System

CPU speed increases faster than disk
speed
Caching improves read performance
Little improvement in write performance

Synchronous writes to metadata
Metadata access dominates for small files
e.g. Five seeks and I/Os to create a file

11Advanced file systems

LFS design

Increases write throughput from 5-10%
of disk to 70%

Removes synchronous writes
Reduces long seeks

Improves over FFS
"Not more complicated"
Outperforms FFS except for one case

12Advanced file systems

LFS in a nutshell

Boost write throughput by writing all
changes to disk contiguously

Disk as an array of blocks, append at end
Write data, indirect blocks, inodes together
No need for a free block map

Writes are written in segments
~1MB of continuous disk blocks
Accumulated in cache and flushed at once

13Advanced file systems

Log operation
Kernel buffer cache

inode blocks data blocks

active segment

log

log head log tail

Disk

14Advanced file systems

Locating inodes

Positions of data blocks and inodes
change on each write

Write out inode, indirect blocks too!

Maintain an inode map
Compact enough to fit in main memory
Written to disk periodically at checkpoints

15Advanced file systems

Cleaning the log

Log is infinite, but disk is finite
Reuse the old parts of the log

Clean old segments to recover space
Writes to disk create holes
Segments ranked by "liveness", age
Segment cleaner "runs in background"

Group slowly-changing blocks together
Copy to new segment or "thread" into old

16Advanced file systems

Cleaning policies

Simulations to determine best policy
Greedy: clean based on low utilisation
Cost-benefit: use age (time of last write)

Measure write cost
Time disk is busy for each byte written
Write cost 1.0 = no cleaning

benefit
cost

(free space generated)*(age of segment)
cost

=

17Advanced file systems

Greedy versus
Cost-benefit

18Advanced file systems

Cost-benefit segment
utilisation

19Advanced file systems

LFS crash recovery

Log and checkpointing
Limited crash vulnerability
At checkpoint flush active segment, inode
map

No fsck required

20Advanced file systems

LFS performance

Cleaning behaviour better than
simulated predictions
Performance compared to SunOS FFS

Create-read-delete 10000 1k files
Write 100-MB file sequentially, read back
sequentially and randomly

21Advanced file systems

Small-file performance

22Advanced file systems

Large-file performance

23Advanced file systems

Overview of talk

Unix Fast File System
Log-Structured System
Soft Updates
Conclusions

24Advanced file systems

Soft updates

Alternative mechanism for improving
performance of writes

All metadata updates can be asynchronous
Improved crash recovery
Same on-disk structure as FFS

25Advanced file systems

The metadata update
problem

Disk state must be consistent enough to
permit recovery after a crash

No dangling pointers
No object pointed to by multiple pointers
No live object with no pointers to it

FFS achieves this by synchronous writes
Relaxing sync. writes requires update
sequencing or atomic writes

26Advanced file systems

Design constraints

Do not block applications unless fsync
Minimise writes and memory usage
Retain 30-second flush delay
Do not over-constrain disk scheduler

It is already capable of some reordering

27Advanced file systems

Dependency tracking

Asynchronous metadata updates need
ordering information

For each write, pending writes which
precede it

Block-based ordering is insufficient
Cycles must be broken with sync. writes
Some blocks stay dirty for a long time
False sharing due to high granularity

28Advanced file systems

Circular dependency
example

directory

29Advanced file systems

inode #32

inode #33

inode #34

inode #35

inode block
a.txt 89

b.pdf 32

366c.doc

...

Circular dependency
example

create file d.txt

30Advanced file systems

inode #32

inode #33

inode #34

inode #35

a.txt 89

b.pdf 32

366

34

c.doc

d.txt

...

Inode must be initialised before directory entry is added

Circular dependency
example

remove file b.pdf

31Advanced file systems

inode #32

inode #33

inode #34

inode #35

a.txt 89

366

34

c.doc

d.txt

...

Directory entry must be removed before inode is deallocated

Update implementation

Update list for each pointer in cache
FS operation adds update to each affected
pointer
Update incorporates dependencies

Updates have "before", "after" values
for pointers

Roll-back, roll-forward to break cycles

32Advanced file systems

Circular dependency
example

33Advanced file systems

inode #32

inode #33

inode #34

inode #35

a.txt 89

b.pdf 32

366

34

c.doc

d.txt

...

roll back
remove

Rollback allows dependency to be suppressed

Soft updates details

Blocks are locked during roll-back
Prevents processes from seeing stale cache

Existing updates never get new
dependencies

No indefinite aging

Memory usage is acceptable
Updates block if usage becomes too high

34Advanced file systems

Recovery with soft
updates

"Benign" inconsistencies after crashes
Freespace maps may miss free entries
Link counts may be too high

Fsck is still required
Need not run immediately
Only has to check in-use inodes
Can run in the background

35Advanced file systems

Soft updates performance

Recovery time on 76% full 4.5GB disk
150s for FFS fsck versus 0.35s ...

Microbenchmarks
Compared soft updates, async writes, FFS
Create, delete, read for 32MB of files

Soft updates versus update logging
Sdet benchmark of "user scripts"
Various degrees of concurrency

36Advanced file systems

Create and delete
performance

Create files Delete files

37Advanced file systems

Read performance

38Advanced file systems

Overall create traffic

39Advanced file systems

Soft updates versus
logging

40Advanced file systems

Conclusions

Papers were separated by 8 years
Much controversy regarding LFS-FFS
comparison

Both systems have been influential
IBM Journalling file system
Ext3 filesystem in Linux
Soft updates come enabled in FreeBSD

41Advanced file systems

