Remote Procedure
Calls (RPC)

Xin Zheng — CS 614 Fall ‘07
(Some slides borrowed from Fall ’05)

Outline

¢ What’s RPC

¢ Cedar and Firefly RPC designs
¢ Performance measurements
¢ Conclusion

Network/Distributed Programs

¢ Computers/processes want to talk to
each other

Might be different machines in a
network, or different address spaces in
same machine

o

O — B
g — &

Communication

¢ Can design your own protocol

Custom Protocol

public class Message {
public Message(String type,
String args) {..}

Custom Protocol

public class Communicator {
public void send(Message m) {..}
public Message recv() {..}

}

Custom Protocol

public void joinGame(String gameName) {
Message m = join(gameName, playerName);
game_comm. send(m);
Message reply = game_comm.recv();
if (reply.getType() == SUCCESS) {

} else if (reply.getType() == ERROR) {

} ;Lse {-}
}

Communication

¢ Can design your own protocol
¢ OR...

¢ Realize that intra-process communication
already happens all the time, via
procedure calls!

O —_— B
g — &

A Very Simple Idea

¢ Retain local procedure call semantics, but
let procedures reside on different
machines

¢ ...And you get RPC!

o - o
& — &

return...

A Very Simple Idea

< Retain local procedure call semantics, but
let procedures reside an differen
machines

Client wants to say
something:
foo(“Hi there”);

G——
“ return.. #

¢ ...And you g¢

A Very Simple Idea

¢ Retain local procedure call semantics, but
let procedures reside on different
machines

¢ ..And you get RPC!

And server replies:
return “Howdy”;

& fo
%#

return...

Why RPC?

o

For programmers, nothing new to learn
Distributed applications don’t have to
look all that different from local
programs

o

o

Reducing extralinguistic clutter is always
good.... Pretty much all languages already
support procedures/functions/methods

o Web Applications

¢ Server and client (browser) side
components

¢ Client provides Ul
¢ Server provides data, computation

o Google Web Toolkit

¢ Java to JavaScript compiler

¢ Most of Gmail, Google Maps, etc written
in GWT

¢ Provides higher level abstractions in Java
compared to native JavaScript

o How It Works
Caller Callee
foo(“Hi there”); dispatcher() {
foo(s) { // finds procedure
- > foo(s);
actual pro
. foo(s
/7 wait AT
return “Howdy”;
}
return;
// send_to.onchange event handler
® function findContacts() {
(om— = document.forms[@].send to.value;
©-3 = <input type=“text”
Cm name=“send_to” X
P onchange=“findContact
Inbox AJAX = RPC!
Starred ¥
Chats ©
Sent Mail
Drafts
i
zam e e
“Bon Unr operah@aTal coms
o Google Web Toolkit

public interface ContactsService {
public String[] getContacts(String s);
}

o Google Web Toolkit

|pubLic interface ContactsService { .. |

public class ContactsServiceImpl
implements ContactsService {

public Stringl[]

getContacts(String s) {
return ..;

}

}

Google Web Toolkit

|pubLic interface ContactsService { ..

// send_to.onchange event handler
public void onChange(String s) {
ContactsService svc =
GWT.create(ContactsService);
String[] contacts =
svc.getContacts(s);

Making RPC Fast

¢ Both Cedar and Firefly use custom
protocols

¢ Skips traditional network stack

¢ Very platform specific
Firefly has some (a lot?) hand-tuned
assembly code
Also relies a bit on multi-processors for
performance

Cedar

o

Minimize time between call and getting
result

Minimize load on servers

o

¢ Assume a large number of call with small
amounts of data transfer

o

Protocol defined at the packet level

o

Implemented in Mesa

Simple Calls

Caller Callee

dispatcherlD,
procedure,
arguments]

Call[calliD, _
foo(); allca dispatcher() {

stub
foo() {

v

foo();

ctual proc]

Result[calllD,
results]

&

return;

Simple Calls

¢ Client retransmits until ack received
Result acts as an ack

Similar for the callee: next call packet is a
sufficient ack)

¢ Callee maintains table for last call ID
Duplicate call packets can be discarded
This shared state acts as connection

Advantages

¢ No special connection establishment
¢ Low state requirements
Callee: only call ID table stored

Caller: single counter sufficient (for
sequence number)

No concern for state of connection — ping
packets not required

No explicit connection termination

Calter machine a Callee machine
User RPC + Stub RPC + Stub Server

can |3 sona ca pie Call[CalllD, Pkt = 0, pleaseAck,] arg roc0rd

Wait for ack

Ack[CalliD, Pkt =0]
build next pkt wait next pkt
Tranencit Data[CaliiD, Pkt =1, dontAck,] imvokocall 1Y do cal
Wait for pkt

Data[CalllD, Pkt = 1, pleaseAck,

Wait for ack \L

Ack[CalllD, Pkt =1]

Wait for regult

Result| D, Pkt = 2,
4 esult[CalliD, Pt = 2, dontAck,]

Sendresult K { return
Wait for ack

o Firefly

¢ Goes even further than Cedar in
optimizations
¢ Protocol defined at the sub-packet level
Allows procedure stubs to access packets
directly
Packet are reused when possible
¢ Written in Modula-2+/assembly

o Reusing Packets

o

Server stub can retain call packet for
result

o

Waiting thread contains packet buffer —
this packet can be used for
retransmission

o

Packet buffers reside in memory shared
by everyone

Security can be an issue

° Performance of Cedar

Table I. Performance Results for Some Examples of Remote Calls

o Performance of Firefly

Table I: Time for 10000 RPCs

of caller Calls to Null() Calls to MaxResult(b)
threads seconds RPCs/sec seconds megabits/sec
1 26.61 375 63.47 1.82
2 35.28 3.28
3 27.28 4.25
4 =2.7mspercall | 2403 4.65
5 to “Null” 24.69 4.69
6 24.65 4.70
7 24.72 4.69
8 24.68 4.69

Procedure Minimum Median Transmission Local-only
no args/results 1059 9
1 arg/result 1070 10
2 args/results 1077 11
4 args/results 1115 12
10 args/results 1222 17
1 word array 1069 10
4 word array 1106 1153 174 13
10 word array 1214 1250 239 16
40 word array 1643 1695 566 51
100 word array 2915 2926 1219 98
resume except’n 2555 2637 284 134
unwind except’n 3374 3467 284 196
o Firefly Stubs+Runtime
Table VII: Latency of stubs and RPC runtime
Machine Procedure Microseconds
Caller Calling program (loop to repeat call) 16
Calling stub (call & return) 90
Starter 128
Transporter (send call pkt) 27
Server Receiver (receive call pkt) 158
Server stub (call & return) Send+ 68
Null (the server procedure) : 10
Receiver (send result pkt) Receive 27
Caller Transporter (receive result pkt) 49
Ender 33
TOTAL 606

Assembly Code

Table IX: Execution time for main path of the Ethernet interrupt routine

Version Time in microseconds
Original Modula-2+ 758
Final Modula-2+ 547
Assembly language 177

Threads

Table XI: Throughput in megabits/second of MaxResult(b)
with varying numbers of processors

caller processors 5 1 1

Server processors 5 5 1

1 caller thread 2.0 1.5 1.3
2 caller threads 3.4 23 2.0
3 caller threads 4.6 2.7 24
4 caller threads 4.7 2.7 2.5
S caller threads 4.7 2.7 2.5

o Firefly Send+Receive
Table VI: Latency of steps in the send+receive operation
Action Microseconds for Microseconds for
74 byte packet 1514 byte packet
(Gf different)
59 a
Replace P a0 b
37
unneeded buffers o
10 c
and process AN
outstanding 2 a
70 a 815 e
packets 0 4 1230 e
80 d 835 e
a
177 a
P checksum b 140 b
Wakeup RPC thread a
Total for send+receive 954 4414
° Processors
Table X: Calls to Null() with varying numbers of processors
caller server seconds for
processors Pprocessors 1000 calls
5 5 2.69
4 5 2.73
3 5
2 5
1 5
1 4
1 3
1 2
1 1
° Comparison
Table XII: Performance of remote RPC in other systems
System Machine - ~ MIPs Latency in Throughput in
Processor milliseconds megabits/sec
Cedar [2] Dorado - custom 1x4 1 2.0
Amoeba [7] Tadpole - M68020 | 1x 1.5 1.4 53
VI[3] Sun 3/75 - M68020| 1x2 25 4.4
Sprite [6] Sun 3/75 - M68020[1x2 2.8 5.6
Amoeba/Unix [7] Sun 3/50 - M68020 x 1.5 7.0 1.8
Firefly FF - MicroVAXII | 1x1 4.8 2.5
Firefly FF - MicroVAXII | 5x1 2.7 4.6

Comments

¢ RPC, as an abstraction, is popular
Both inter- and intra-machine
¢ Asynchronous versions now common
¢ Tension between interoperability and
performance

Java RMI’s default implementation is
HTTP

Asis GWT

