
Ordering &
Consistent Cuts

6 November 2007
barry burton

CS 614

1

Overview

• Same Author

• complementary view on similar but
different subjects

• Rigorous representation of distributed
computation

2

Question

• Does this matter in implementations?

• Does this matter at all?

3

Terms

• Distributed System

• Distributed Computation

4

Terms

• Global State

• Stable Property

5

Order

• Relation to Time

• In a Distributed System

6

Distributed System

7

Happened Before

• Denoted →

• Relation over Events

• Partial Order (Irreflexive)

8

Happened Before

• For 2 Events a & b, a→b if

• a comes before b in the same process

• a sends a message received by b

9

Happened Before

• Otherwise a↛b

• Always a↛a

• If a↛b & b↛a

• a & b are Concurrent

10

Logical Clocks

• Monotonically Increasing Integer Counter

• Ci⟨a⟩ < Cj⟨b⟩ if a→b

11

Logical Clocks

• Ci is incremented between 2 events in Pi

• Upon receiving message with timestamp
Tm, Cj is set to a value > Tm & ≥ Cj current

12

Total Ordering

• a⇒b if

• Ci⟨a⟩ < Cj⟨b⟩

• Ci⟨a⟩ = Cj⟨b⟩ and Pi < Pj

13

Application

• Mutual Exclusion Problem

• Single Resource

• Requests Granted In Order

• Completes

14

Sideband Problem

• Logical Clocks may not always agree with
intuitive notions of order

• External Events are Ignored

15

Physical Clocks

• Ci(t) is the reading of clock Ci at time t

• For All i,j |Ci(t) -Cj(t)| < ϵ

16

Global State

• Restrict slightly the notion of a distributed
system

• messages must be delivered in order

17

Channels

18

Global State

• Single Token Conservation System

• Consistency

19

Snapshot

• A Consistent Global State

• The only way to check for Stable
Properties

20

Consistent States

21

Recording

• Each process records its own state

• Both processes on a channel record the
state of the channel

• Ordering?

22

Recording Algorithm

• Ensure that messages only appear once in
the global state

• avoid recording a message at multiple
processes

• avoid recording a message at a process
and in a channel

23

Recording Algorithm

• Initiated by some process deciding to
record its state

• Terminates when all processes have
recorded their states

24

Recording Algorithm

• Use marker

• After recording state, send marker on all
incident, outgoing channels

25

Recording Algorithm

• On receiving marker

• Record state of process if not yet done

• Otherwise, record state of channel
which marker came on

26

Recorded Global State

• May not have happened at the same time

• But could have

27

Recorded Global State

• The recorded Global State S* is reachable
from the initial Global State and the final
Global State is reachable from it

• There exists a permutation of the actual
computation which does contain S*

28

Stability Detection

• Record the Global State

• Apply the given predicate to the Global
State

• Return value of TRUE means property
holds at termination of recording

• Return value of FALSE means that property
does not hold at initiation of recording

29

Summary

• Elegant, provable properties of distributed
systems.

• Unquestionably helpful for reasoning about
distributed systems

30

Summary

• Practical for real implementations?

• Scalable to geographically large systems
and / or high number of processes?

31

Summary

• Is relaxing the same ideas even helpful for
designing larger scale / higher performance
systems?

32

