Ordering &
Consistent Cuts

6 November 2007
barry burton
CSé6l4

Overview

® Same Author

® complementary view on similar but
different subjects

® Rigorous representation of distributed
computation

Question

® Does this matter in implementations!?

® Does this matter at all?

Terms

® Distributed System

® Distributed Computation

® Global State

Terms

® Stable Property

Order

® Relation to Time

® |n a Distributed System

Distributed System

Happened Before

® Denoted —
® Relation over Events

® Partial Order (Irreflexive)

Happened Before

® For 2 Eventsa & b,a—b if
® a comes before b in the same process

® a sends a message received by b

Happened Before

® (QOtherwise a»b
® Always a»a

® |fa»b &bw»a

® 3 &b are Concurrent

Logical Clocks

® Monotonically Increasing Integer Counter

® (Cia) < Cj if a—b

Logical Clocks

® (C;isincremented between 2 events in P;

® Upon receiving message with timestamp
Tm, Cjis set to a value > Ty, & = Cj current

Total Ordering

® a=bif

o (Cia) < Cib)
® Ci(a) =Cgb)and Pi <P,

Application

Mutual Exclusion Problem
Single Resource
Requests Granted In Order

Completes

Sideband Problem

® |ogical Clocks may not always agree with
intuitive notions of order

® External Events are Ignored

Physical Clocks

® (Ci(t) is the reading of clock C; at time t
® ForAlli,j|Ci(t) -Ci(t)] < €

Global State

® Restrict slightly the notion of a distributed
system

® messages must be delivered in order

Channels

C1
p process

Cc2

C4 C3 channel

Fig. 1. A distributed system with processes p,
g, and r and channeis ci, ¢2, ¢3, and c4,

Global State

® Single Token Conservation System

e Consistency

Snapshot

® A Consistent Global State

® The only way to check for Stable

Properties

20

Consistent States

in transit
global state: token inp globa! state: token inC -~
e e e L
| j [— ‘/{l
sl empty sOl lsO token sOl
| ° Q I | ° o |
! empty . : empty |
I | |
] L J
global state: token in Cc’ global state: token in q

Fig. 4. Global states and transitions of the single-token conservation system.
21

Recording

Each process records its own state

Both processes on a channel record the
state of the channel

Ordering?

22

Recording Algorithm

® Ensure that messages only appear once in
the global state

® avoid recording a message at multiple
processes

® avoid recording a message at a process
and in a channel

23

Recording Algorithm

Initiated by some process deciding to
record its state

Terminates when all processes have
recorded their states

24

Recording Algorithm

® Use marker

® After recording state, send marker on all
incident, outgoing channels

25

Recording Algorithm

® On receiving marker
® Record state of process if not yet done

® QOtherwise, record state of channel
which marker came on

26

Recorded Global State

® May not have happened at the same time

® But could have

27

Recorded Global State

® The recorded Global State S* is reachable
from the initial Global State and the final
Global State is reachable from it

® There exists a permutation of the actual
computation which does contain S*

28

Stability Detection

Record the Global State

Apply the given predicate to the Global
State

Return value of TRUE means property
holds at termination of recording

Return value of FALSE means that property
does not hold at initiation of recording

29

Summary

Elegant, provable properties of distributed
systems.

Unquestionably helpful for reasoning about
distributed systems

30

Summary

® Practical for real implementations!?

® Scalable to geographically large systems
and / or high number of processes?

31

Summary

® |s relaxing the same ideas even helpful for
designing larger scale / higher performance
systems!

32

