
1

Consensus, impossibility
results and Paxos

Ken Birman

Consensus… a classic problem

n Consensus abstraction underlies many
distributed systems and protocols
n N processes
n They start execution with inputs ∈ {0,1}
n Asynchronous, reliable network
n At most 1 process fails by halting (crash)
n Goal: protocol whereby all “decide” same

value v, and v was an input

Distributed Consensus

Jenkins, if I want another yes-man, I’ll build one!

Lee Lorenz, Brent Sheppard

Asynchronous networks

n No common clocks or shared notion of
time (local ideas of time are fine, but
different processes may have very
different “clocks”)

n No way to know how long a message
will take to get from A to B

n Messages are never lost in the network

Quick comparison…

Usually detect failures with
timeout

Crash failures, can’t detect
reliably

Clocks but limited syncNo clocks of any kinds

May have to operate “during”
partitioning

No partitioning faults (“wait until
over”)

Just resend until acknowledged;
often have a delay model

Reliable message passing,
unbounded delays

Real worldAsynchronous model

Fault-tolerant protocol

n Collect votes from all N processes
n At most one is faulty, so if one doesn’t

respond, count that vote as 0

n Compute majority
n Tell everyone the outcome
n They “decide” (they accept outcome)
n … but this has a problem! Why?

2

What makes consensus hard?

n Fundamentally, the issue revolves
around membership
n In an asynchronous environment, we can’t

detect failures reliably
n A faulty process stops sending messages

but a “slow” message might confuse us

n Yet when the vote is nearly a tie, this
confusing situation really matters

Fischer, Lynch and Patterson

n A surprising result
n Impossibility of Asynchronous Distributed

Consensus with a Single Faulty Process

n They prove that no asynchronous algorithm
for agreeing on a one-bit value can guarantee
that it will terminate in the presence of crash
faults
n And this is true even if no crash actually occurs!

n Proof constructs infinite non-terminating runs

Core of FLP result

n They start by looking at a system with
inputs that are all the same
n All 0’s must decide 0, all 1’s decides 1

n Now they explore mixtures of inputs
and find some initial set of inputs with
an uncertain (“bivalent”) outcome

n They focus on this bivalent state

Self-Quiz questions

n When is a state “univalent” as opposed
to “bivalent”?

n Can the system be in a univalent state
if no process has actually decided?

n What “causes” a system to enter a
univalent state?

Self-Quiz questions

n Suppose that event e moves us into a
univalent state, and e happens at p.
n Might p decide “immediately?

n Now sever communications from p to
the rest of the system. Both event e
and p’s decision are “hidden”
n Does this matter in the FLP model?
n Might it matter in real life?

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S* denotes bivalent state
S0 denotes a decision 0 state
S1 denotes a decision 1 state

Sooner or later all executions
decide 0

Sooner or later all executions
decide 1

3

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

e

e is a critical event that
takes us from a bivalent

to a univalent state:
eventually we’ll “decide” 0

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

They delay e and show
that there is a situation in

which the system will
return to a bivalent state

S’
*

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0 S’

*

In this new state they
show that we can deliver
e and that now, the new
state will still be bivalent!

S’’
*

e

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0 S’

*

Notice that we made the
system do some work and
yet it ended up back in an
“uncertain” state. We can

do this again and again

S’’
*

e

Core of FLP result in words

n In an initially bivalent state, they look at
some execution that would lead to a
decision state, say “0”
n At some step this run switches from

bivalent to univalent, when some process
receives some message m

n They now explore executions in which m is
delayed

Core of FLP result

n Initially in a bivalent state
n Delivery of m would make us univalent but

we delay m
n They show that if the protocol is fault-tolerant

there must be a run that leads to the other
univalent state

n And they show that you can deliver m in this
run without a decision being made

4

Core of FLP result

n This proves the result: a bivalent
system can be forced to do some work
and yet remain in a bivalent state.
n We can “pump” this to generate indefinite

runs that never decide
n Interesting insight: no failures actually

occur (just delays). FLP attacks a fault-
tolerant protocol using fault-free runs!

Intuition behind this result?

n Think of a real system trying to agree on
something in which process p plays a key role

n But the system is fault-tolerant: if p crashes it
adapts and moves on

n Their proof “tricks” the system into treating p
as if it had failed, but then lets p resume
execution and “rejoin”

n This takes time… and no real progress occurs

But what did “impossibility” mean?

n In formal proofs, an algorithm is totally
correct if
n It computes the right thing
n And it always terminates

n When we say something is possible, we
mean “there is a totally correct
algorithm” solving the problem

But what did “impossibility” mean?

n FLP proves that any fault-tolerant
algorithm solving consensus has runs
that never terminate
n These runs are extremely unlikely

(“probability zero”)
n Yet they imply that we can’t find a totally

correct solution
n “consensus is impossible” thus means

“consensus is not always possible”

Solving consensus

n Systems that “solve” consensus often use a
membership service
n This GMS functions as an oracle, a trusted status

reporting function

n Then consensus protocol involves a kind of 2-
phase protocol that runs over the output of
the GMS

n It is known precisely when such a solution
will be able to make progress

GMS in a large system

GMS

Global events
are inputs to

the GMS

Output is the official
record of events that

mattered to the
system

5

Paxos Algorithm

n Distributed consensus algorithm
n Doesn’t use a GMS… at least in basic version… but

isn’t very efficient either

n Guarantees safety, but not liveness.
n Key Assumptions:

n Set of processes that run Paxos is known a-priori
n Processes suffer crash failures
n All processes have Greek names (but translate as

“Fred”, “Cynthia”, “Nancy”…)

Paxos “proposal”

n Node proposes to append some
information to a replicated history

n Proposal could be a decision value,
hence can solve consensus

n Or could be some other information,
such as “Frank’s new salary” or
“Position of Air France flight 21”

Paxos Algorithm

n Proposals are associated with a version
number.

n Processors vote on each proposal. A proposal
approved by a majority will get passed.
n Size of majority is “well known” because potential

membership of system was known a-priori
n A process considering two proposals approves the

one with the larger version number.

Paxos Algorithm

n 3 roles
n proposer
n acceptor
n Learner

n 2 phases
n Phase 1: prepare request ßà Response
n Phase 2: Accept request ßà Response

Phase 1: (prepare request)

(1) A proposer chooses a new proposal
version number n , and sends a prepare
request (“prepare”,n) to a majority of
acceptors:
(a) Can I make a proposal with number n ?
(b) if yes, do you suggest some value for my

proposal?

Phase 1: (prepare request)

(2) If an acceptor receives a prepare request
(“prepare”, n) with n greater than that of
any prepare request it has already
responded, sends out (“ack”, n, n’, v’) or
(“ack”, n, ⊥ , ⊥)
(a) responds with a promises not to accept any

more proposals numbered less than n.

(b) suggest the value v of the highest-number
proposal that it has accepted if any, else ⊥

6

Phase 2: (accept request)

(3) If the proposer receives responses from
a majority of the acceptors, then it can
issue a accept request (“accept”, n , v)
with number n and value v:
(a) n is the number that appears in the prepare

request.
(b) v is the value of the highest-numbered

proposal among the responses

Phase 2: (accept request)

(4) If the acceptor receives an accept
request (“accept”, n , v) , it accepts the
proposal unless it has already responded to
a prepare request having a number greater
than n.

Learning the decision

n Whenever acceptor accepts a proposal,
respond to all learners (“accept”, n, v).

n Learner receives (“accept”, n, v) from a
majority of acceptors, decides v, and sends
(“decide”, v) to all other learners.

n Learners receive (“decide”, v), decide v

In Well-Behaved Runs

1 1

2

n

.

.

.

(“accept”,1 ,v1)

1

2

n

.

.

.

1 1

2

n

.

.

.

(“prepare”,1)

(“ack”,1, ⊥ , ⊥)

decide v1

(“accept”,1 ,v1)

1: proposer
1-n: acceptors
1-n: acceptors

Paxos is safe…

n Intuition:
n If a proposal with value v is decided, then

every higher-numbered proposal issued by
any proposer has value v.

A majority of
acceptors accept
(n, v), v is decided

next prepare request with
Proposal Number n+1

(what if n+k?)

Safety (proof)

n Suppose (n, v) is the earliest proposal that passed. If
none, safety holds.

n Let (n’, v’) be the earliest issued proposal after (n, v)
with a different value v’!=v

n As (n’, v’) passed, it requires a major of acceptors.
Thus, some process approve both (n, v) and (n’, v’) ,
though it will suggest value v with version number
k>= n.

n As (n’, v’) passed, it must receive a response (“ack”,
n’, j, v’) to its prepare request, with n<j<n’. Consider
(j, v’) we get the contradiction.

7

Liveness

n Per FLP, cannot guarantee liveness

n Paper gives us a scenario with 2
proposers, and during the scenario no
decision can be made.

Liveness(cont.)

n Omissions cause the Liveness problem.
n Partitioning failures would look like

omissions in Paxos
n Repeated omissions can delay decisions

indefinitely (a scenario like the FLP one)

n But Paxos doesn’t block in case of a lost
message
n Phase I can start with new rank even if

previous attempts never ended

Liveness(cont.)

n As the paper points out, selecting a
distinguished proposer will solve the problem.
n “Leader election”

n This is how the view management protocol of
virtual synchrony systems works… GMS view
management “implements” Paxos with leader
election.

n Protocol becomes a 2-phase commit with a 3-
phase commit when leader fails

A small puzzle

n How does Paxos scale?
n Assume that as we add nodes, each node

behaves iid to the other nodes
n … hence likelihood of concurrent proposals

will rise as O(n)

n Core Paxos: 3 linear phases… but
expected number of rounds will rise
too… get O(n2)… O(n3) with failures…

How does Paxos scale?

n Another, subtle scaling issue
n Suppose we are worried about the memory in use

to buffer pending decisions and other messages

n Under heavy load, round trip delay to reach a
majority of the servers will limit the “clearing” time

n Works out to something like an O(n logn) or O(n2)
cost depending on how you implement the
protocol. This is a kind of “time-space” complexity
that has never really been studied… we’ll see why
it matters in an upcoming lecture

Paxos in real life

n Used but not widely. For example,
Google uses Paxos in their lock server

n One issue is that Paxos gets complex if
we need to reconfigure it to change the
set of nodes running the protocol

n Another problem is that other more
scalable alternatives are available

8

Summary

n Consensus is “impossible”
n But this doesn’t turn out to be a big

obstacle
n We can achieve consensus with probability

one in many situations

n Paxos is an example of a consensus
protocol, very simple

n We’ll look at other examples Thursday

