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Consensus, impossibility 
results and Paxos

Ken Birman

Consensus… a classic problem

n Consensus abstraction underlies many 
distributed systems and protocols
n N processes
n They start execution with inputs ∈ {0,1}
n Asynchronous, reliable network
n At most 1 process fails by halting (crash)
n Goal: protocol whereby all “decide” same 

value v, and v was an input 

Distributed Consensus

Jenkins, if I want another yes-man, I’ll build one!

Lee Lorenz, Brent Sheppard

Asynchronous networks

n No common clocks or shared notion of 
time (local ideas of time are fine, but 
different processes may have very 
different “clocks”)

n No way to know how long a message 
will take to get from A to B

n Messages are never lost in the network

Quick comparison…

Usually detect failures with 
timeout

Crash failures, can’t detect 
reliably

Clocks but limited syncNo clocks of any kinds

May have to operate “during” 
partitioning

No partitioning faults (“wait until 
over”)

Just resend until acknowledged; 
often have a delay model

Reliable message passing, 
unbounded delays

Real worldAsynchronous model

Fault-tolerant protocol

n Collect votes from all N processes
n At most one is faulty, so if one doesn’t 

respond, count that vote as 0

n Compute majority
n Tell everyone the outcome
n They “decide” (they accept outcome)
n … but this has a problem!  Why?
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What makes consensus hard?

n Fundamentally, the issue revolves 
around membership
n In an asynchronous environment, we can’t 

detect failures reliably
n A faulty process stops sending messages 

but a “slow” message might confuse us

n Yet when the vote is nearly a tie, this 
confusing situation really matters

Fischer, Lynch and Patterson

n A surprising result
n Impossibility of Asynchronous Distributed 

Consensus with a Single Faulty Process

n They prove that no asynchronous algorithm 
for agreeing on a one-bit value can guarantee 
that it will terminate in the presence of crash 
faults
n And this is true even if no crash actually occurs!

n Proof constructs infinite non-terminating runs

Core of FLP result

n They start by looking at a system with 
inputs that are all the same
n All 0’s must decide 0, all 1’s decides 1

n Now they explore mixtures of inputs 
and find some initial set of inputs with 
an uncertain (“bivalent”) outcome

n They focus on this bivalent state

Self-Quiz questions

n When is a state “univalent” as opposed 
to “bivalent”?

n Can the system be in a univalent state 
if no process has actually decided?  

n What “causes” a system to enter a 
univalent state?

Self-Quiz questions

n Suppose that event e moves us into a 
univalent state, and e happens at p.  
n Might p decide “immediately?

n Now sever communications from p to 
the rest of the system.  Both event e
and p’s decision are “hidden”
n Does this matter in the FLP model? 
n Might it matter in real life?

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

S* denotes bivalent state
S0 denotes a decision 0 state
S1 denotes a decision 1 state

Sooner or later all executions 
decide 0

Sooner or later all executions 
decide 1
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Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

e

e is a critical event that 
takes us from a bivalent 

to a univalent state: 
eventually we’ll “decide” 0

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

They delay e and show 
that there is a situation in 

which the system will 
return to a bivalent state

S’
*

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0 S’

*

In this new state they 
show that we can deliver 
e and that now, the new 
state will still be bivalent!

S’’
*

e

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0 S’

*

Notice that we made the 
system do some work and 
yet it ended up back in an 
“uncertain” state.  We can 

do this again and again

S’’
*

e

Core of FLP result in words

n In an initially bivalent state, they look at 
some execution that would lead to a 
decision state, say “0”
n At some step this run switches from 

bivalent to univalent, when some process 
receives some message m

n They now explore executions in which m is 
delayed

Core of FLP result

n Initially in a bivalent state
n Delivery of m would make us univalent but 

we delay m
n They show that if the protocol is fault-tolerant 

there must be a run that leads to the other
univalent state

n And they show that you can deliver m in this 
run without a decision being made
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Core of FLP result

n This proves the result: a bivalent 
system can be forced to do some work 
and yet remain in a bivalent state.
n We can “pump” this to generate indefinite 

runs that never decide
n Interesting insight: no failures actually 

occur (just delays).  FLP attacks a fault-
tolerant protocol using fault-free runs!

Intuition behind this result?

n Think of a real system trying to agree on 
something in which process p plays a key role

n But the system is fault-tolerant: if p crashes it 
adapts and moves on

n Their proof “tricks” the system into treating p 
as if it had failed, but then lets p resume 
execution and “rejoin”

n This takes time… and no real progress occurs

But what did “impossibility” mean?

n In formal proofs, an algorithm is totally 
correct if
n It computes the right thing
n And it always terminates

n When we say something is possible, we 
mean “there is a totally correct 
algorithm” solving the problem

But what did “impossibility” mean?

n FLP proves that any fault-tolerant 
algorithm solving consensus has runs 
that never terminate
n These runs are extremely unlikely 

(“probability zero”)
n Yet they imply that we can’t find a totally 

correct solution
n “consensus is impossible” thus means 

“consensus is not always possible”

Solving consensus

n Systems that “solve” consensus often use a 
membership service
n This GMS functions as an oracle, a trusted status 

reporting function

n Then consensus protocol involves a kind of 2-
phase protocol that runs over the output of 
the GMS

n It is known precisely when such a solution 
will be able to make progress

GMS in a large system

GMS

Global events 
are inputs to 

the GMS

Output is the official 
record of events that 

mattered to the 
system
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Paxos Algorithm

n Distributed consensus algorithm
n Doesn’t use a GMS… at least in basic version… but 

isn’t very efficient either

n Guarantees safety, but not liveness.
n Key Assumptions:

n Set of processes that run Paxos is known a-priori
n Processes suffer crash failures
n All processes have Greek names (but translate as 

“Fred”, “Cynthia”, “Nancy”…)

Paxos “proposal”

n Node proposes to append some 
information to a replicated history

n Proposal could be a decision value, 
hence can solve consensus

n Or could be some other information, 
such as “Frank’s new salary” or 
“Position of Air France flight 21”

Paxos Algorithm

n Proposals are associated with a version 
number. 

n Processors vote on each proposal. A proposal 
approved by a majority will get passed.
n Size of majority is “well known” because potential 

membership of system was known a-priori
n A process considering two proposals approves the 

one with the larger version number.

Paxos Algorithm

n 3 roles 
n proposer
n acceptor 
n Learner

n 2 phases
n Phase 1: prepare request  ßà Response
n Phase 2: Accept request   ßà Response

Phase 1: (prepare request)

(1) A proposer chooses a new proposal 
version number n , and sends a prepare 
request (“prepare”,n) to a majority of 
acceptors:
(a) Can I make a proposal with number n ?
(b) if yes, do you suggest some value for my 

proposal?

Phase 1: (prepare request)

(2) If an acceptor receives a prepare request 
(“prepare”, n) with n greater than that of 
any prepare request it has already 
responded, sends out (“ack”, n,  n’, v’) or 
(“ack”, n, ⊥ , ⊥)
(a) responds with a promises not to accept any 

more proposals numbered less than n.

(b) suggest the value v of the highest-number 
proposal that it has accepted if any, else ⊥
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Phase 2: (accept request)

(3) If the proposer receives responses from 
a majority of the acceptors, then it can 
issue a accept request (“accept”, n , v) 
with number n and value v: 
(a) n is the number that appears in the prepare 

request.
(b) v is the value of the highest-numbered 

proposal among the responses

Phase 2: (accept request)

(4) If the acceptor receives an accept 
request (“accept”, n , v) , it accepts the 
proposal unless it has already responded to 
a prepare request having a number greater 
than n. 

Learning the decision

n Whenever acceptor accepts a proposal, 
respond to all learners (“accept”, n, v). 

n Learner receives (“accept”, n, v) from a 
majority of acceptors, decides v, and sends 
(“decide”, v) to all other learners.

n Learners receive (“decide”, v), decide v

In Well-Behaved Runs
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(“ack”,1, ⊥ , ⊥ )

decide v1

(“accept”,1 ,v1)

1:    proposer
1-n: acceptors
1-n: acceptors

Paxos is safe…

n Intuition:
n If a proposal with value v is decided, then 

every higher-numbered proposal issued by 
any proposer has value v.

A majority of 
acceptors accept 
(n, v), v is decided

next prepare request with 
Proposal Number n+1

(what if n+k?)

Safety (proof)

n Suppose (n, v) is the earliest proposal that passed. If 
none, safety holds.

n Let (n’, v’) be the earliest issued proposal after  (n, v)
with a different value v’!=v

n As (n’, v’) passed, it requires a major of acceptors. 
Thus, some process approve both (n, v) and  (n’, v’) ,
though it will suggest value v with version number 
k>= n.

n As (n’, v’) passed, it must receive a response (“ack”, 
n’, j, v’) to its prepare request, with n<j<n’. Consider 
(j, v’) we get the contradiction.



7

Liveness

n Per FLP, cannot guarantee liveness

n Paper gives us a scenario with 2 
proposers, and during the scenario no 
decision can be made.

Liveness(cont.)

n Omissions cause the Liveness problem.
n Partitioning failures would look like 

omissions in Paxos
n Repeated omissions can delay decisions 

indefinitely (a scenario like the FLP one)

n But Paxos doesn’t block in case of a lost 
message
n Phase I can start with new rank even if 

previous attempts never ended

Liveness(cont.)

n As the paper points out, selecting a 
distinguished proposer will solve the problem.
n “Leader election”

n This is how the view management protocol of 
virtual synchrony systems works… GMS view 
management “implements” Paxos with leader 
election.

n Protocol becomes a 2-phase commit with a 3-
phase commit when leader fails

A small puzzle

n How does Paxos scale?
n Assume that as we add nodes, each node 

behaves iid to the other nodes
n … hence likelihood of concurrent proposals 

will rise as O(n)

n Core Paxos: 3 linear phases… but 
expected number of rounds will rise 
too… get O(n2)… O(n3) with failures…

How does Paxos scale?

n Another, subtle scaling issue
n Suppose we are worried about the memory in use 

to buffer pending decisions and other messages

n Under heavy load, round trip delay to reach a 
majority of the servers will limit the “clearing” time

n Works out to something like an O(n logn) or O(n2) 
cost depending on how you implement the 
protocol.  This is a kind of “time-space” complexity 
that has never really been studied… we’ll see why 
it matters in an upcoming lecture

Paxos in real life

n Used but not widely.  For example, 
Google uses Paxos in their lock server

n One issue is that Paxos gets complex if 
we need to reconfigure it to change the 
set of nodes running the protocol

n Another problem is that other more 
scalable alternatives are available
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Summary

n Consensus is “impossible”
n But this doesn’t turn out to be a big 

obstacle
n We can achieve consensus with probability 

one in many situations

n Paxos is an example of a consensus 
protocol, very simple

n We’ll look at other examples Thursday


