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The Problem

Given a collection of processes that can...
B only communicate with significant latency
® only measure time intervals approximately

® fail in various ways

... we want to construct a shared notion of
time
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| In various ways

... we want to construct a shared notion of

time

But each process has a h/w clock, right??
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What’s wrong with the clocks?

Clock dirift

_____________________________________________________________________________________________ =1

Adjustment fa:ctor

" Logical Clock = H/w clock +
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External Vs. Internal Clock Synchronization

® External clock synchronization:
‘Adjust’ clocks with respect to an
external time reference

B Accuracy: how close logical time
1s to real time

® Internal clock synchronization (ICS):
‘Adjust’ clocks among themselves

# Precision: how close the clocks are
to each other




Software Clock Synchronization

1. Deterministic = assumes an upper bound on
transmission delays (which bounds
accuracy) — guarantees some precision

Statistical = expectation and standard
deviation of the delay distributions are
known

Probabilistic =2 no assumptions about delay
distributions (gives better accuracy)
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Today...

i We will discuss two papers that solve ICS:
®m Optimal Clock Synchronization [Srikanth and
Toueg '87]
® Assume reliable network (deterministic)
® Provide logical clock with optimal agreement
® Also optimal with respect to failures
B Probabilistic Internal Clock Synchronization
[Cristian and Fetzer ’03]
® Drop requirements on network (probabilistic)
® Provide very efficient logical clock
= Only provide probabilistic guarantees




Paper 1: System Model

We assume...
Clock drift 1s bounded

(1=p)t=s) <H()-Hys) = (1+p)(t-s)

Communication and processing are reliable

trecv = tsend < tdel

Authenticated messages

will relax this later...




Paper 1: Our Goals

®’ Property 1 (Agreement):
| L,(1) = L,(1) | = o,
(0 1s the precision of the clock synchronization algorithm)

®’ Property 2 (Accuracy):
(L-p)t—s5)+a = L(O-Ly(s) = (A+p)t—s)+b




Paper 1: Our Goals

®’ Property 1 (Agreement):
| L,(1) = L,(1) | = o,
(0 1s the precision of the clock synchronization algorithm)

®’ Property 2 (Accuracy):

(I p)t—s)ta = L(H)-Lys) = (1 +p)t-8)+b
tfpv 7P

What is optimal accuracy?




Paper 1: Our Goals

Optimal Accuracy

B Drift rate of the synchronized clocks 1s bounded
by the maximum drift rate of correct hardware
clocks

p, = p

i Fault-tolerant

® Up to f crash failures, performance failures,
arbitrary (Byzantine) failures




Authenticated Algorithm
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Authenticated Algorithm
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Achieving Optimal Accuracy

Uncertainty of ¢, introduces a difterence in the logical

time between resynchronizations

—> Reason for non-optimal accuracy

® Solution:
® Slow down the logical clocks by a factor of

/2
(P-o +p)

where B =1¢,,,/ (2(1 + p))




Authenticated Messages

B’ Correctness:

If at least f + 1 correct processes broadcast messages by time
t, then every correct process accepts the message by time 7 +

L el
& Unforgeability:

If no correct process broadcasts a message by time ¢, then no
correct process accepts the message by ¢ or earlier

® Relay:

If a correct process accepts the message at time ¢, then every
correct process does so by time ¢ + ¢,




Nonauthenticated Algorithm

’ Replace signed communication with a
broadcast primitive

B Primitive relays messages automatically
® Cost of O(n°) messages per resynchronization

# New limit on number of faulty processes
allowed:

ln>3f




Broadcast Primitive

@ — (echo, round k)




Broadcast Primitive

Received f+ 1
\3 distinct
=5 \ (init, round k)!
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Broadcast Primitive [ redwr

distinct
(echo, round k)!

Received f+1
distinct

\ (init, round k)!

@ — (echo, round k)




Broadcast Primitive [ redwr

distinct
(echo, round k)!

Received f+ 1
distinct

2% \ (init, round k)!
&

Received 2f+ 1 )
distinct
(echo, round k)!
Accept (round k)

.

@ — (echo, round k)




Initialization and Integration

B’ Same algorithms can be used to achieve 1nitial
synchronization and integrate new processes
into the network

® A process independently starts clock C°
® On accepting a message at real time ¢ 1t sets
C%t) =a
|’ “Passive” scheme for integration of new
Proccsscs




Paper 2: Why try another approach?

# Traditional deterministic fault-tolerant clock
synchronization algorithms:

® Assume bounded communication delays

B Require the transmission of at least N2 messages
each time N clocks are synchronized

® Bursty exchange of messages within a narrow re-
synchronization real-time interval

= =
@ @




Probabilistic ICS

Claims:
B’ Proposes family of fault-tolerant internal clock
synchronization (ICS) protocols

B’ Probabilistic reading achieves higher precisions
than deterministic reading

® Doesn’t assume unbounded communication
delays

# Use of convergence function > optimal accuracy




Their approach

B Only requires to send a number of unreliable
broadcast messages

B’ Staggers the message traffic in time

B Uses a new transitive remote clock reading
method

Number of messages in the best case: N + 1

(N time server processes)




Probabilistic Clock Reading
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# Basic Idea:
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Probabilistic Clock Reading

# Basic Idea:

min < t(m,) < (T2 -TO)(1 + p) - min

max(m,)(1 + p) + min(m,)(1 - p)
2

Cq=T1+




Probabilistic Clock Reading

# Basic Idea:

/Is error < A?
~ Yes: Success

bo? Try reading again
Limit: D |
Hmit?)




Probabilistic Clock Reading

# Basic Idea:

—

Maximum
/IS error < @ acceptable clock
_ Yes: Success reading error

No? Try reading again
(Limit: D)




Staggering Messages

slot

p slots per cycle
k cycles per round




Transitive Remote Clock Reading

#® Can reduce the number of messages per round to N + 1

L

real time
>
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Transitive Remote Clock Reading

#® Can reduce the number of messages per round to N + 1

“QN

real time

3

¢, (1.p)

275 IO57 1 Qo ol

C.(T,p)

C.(T,qy)=C.(Tp)+T-C, (Tp)




Transitive Remote Clock Reading

#® Can reduce the number of messages per round to N + 1

L

real time
>

3

¢, (1.p)

275 IO57 1 Qo ol

C.(T,p)

Cannot be used when arbitrary failures can occur!

| I




Round Message Exchange Protocol




Round Message Exchange Protocol

Request Mode

Clock times:
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Round Message Exchange Protocol

Request Mode
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Round Message Exchange Protocol

Request Mode
A finish messages

Reply Mode
Finish Mode \

Clock times:

Qe Clock times:
{ : A

s S s Clock times:
err 9 2
LGNS T TR BT Vot

A request messages er A 11

A

4 reply messages bi




Outline of Algorithms

Round clock C ¥ of process p for round :

CK(t) = H (t) + Ak

/

Void synchronizer() {

ReadClocks(..)

A=A+ cfn(rank(), Clocks, Errors)
T=T+P

\




Convergence Functions

®’ Let I(z) = [L, R] be the interval spanned by at ¢
by correct clocks. If all processes would set
their virtual clocks at the same time ¢ to the
midpoint of /(¢), then all correct clocks would
be exactly synchronized at that point in time.

Unfortunately, this is not a perfect world!




Convergence Functions

# Each correct process makes an approximation /,

which 1s guaranteed to be included 1n a bounded
extension of the interval of correct clocks /:

L(1) = [min{CL (1) - A}, max{C (1) + Aj]

Deviation of clocks is bounded by 0, so length of 7,%(?) is
bounded by 0 + 2A




Failure classes

Algorithm

Tolerated
Failures

Required
Processes

Tolerated types
of failures

CSA Crash

F

F+1

Crash

CSA Read

F

2F + 1

Crash, Reading

CSA Arbitrary

F

3F+1

Arbitrary, Reading

CSA Hybrid

3Fa + 2Fr + Fc +1

Crash, Read., Arb.




Conclusions — Which one 1s better?

® First Paper (deterministic algorithm)
® Simple algorithm
® Unified solution for different types of failures
® Achieves optimal accuracy
B Assumes bounded comunication
B O(n’) messages
® Bursty communication




Conclusions — Which one 1s better?

B Second Paper (probabilistic algorithm)

m Takes advantage of the current working
conditions, by invoking successive round-trip
exchanges, to reach a tight precision)

® Precision 1s not guaranteed
® Achieves optimal accuracy
B ()(n) messages




Conclusions — Which one 1s better?

B Second Paper (probabilistic algorithm)

m Takes advantage of the current working
conditions, by invoking successive round-trip
exchanges, to reach a tight precision)

® Precision 1s not guaranteed
® Achieves optimal accuracy
B ()(n) messages

If both algorithms achieve optimal accuracy,

Then why is there still work being done?




