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The Problem

Given a collection of processes that can...
 only communicate with significant latency
 only measure time intervals approximately
 fail in various ways

... we want to construct a shared notion of 
time
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The Problem

Given a collection of processes that can...
 only communicate with significant latency
 only measure time intervals approximately
 fail in various ways

... we want to construct a shared notion of 
time

But each process has a h/w clock, right??
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What’s wrong with the clocks?



What’s wrong with the clocks?

Logical Clock = H/w clock + 
Adjustment factor



External Vs. Internal Clock Synchronization

External clock synchronization: 
‘Adjust’ clocks with respect to an 
external time reference

Accuracy: how close logical time 
is to real time 

Internal clock synchronization (ICS): 
‘Adjust’ clocks among themselves

Precision: how close the clocks are 
to each other



Software Clock Synchronization

1. Deterministic  assumes an upper bound on 
transmission delays (which bounds 
accuracy) – guarantees some precision

2. Statistical  expectation and standard 
deviation of the delay distributions are 
known

3. Probabilistic  no assumptions about delay 
distributions (gives better accuracy)
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Software Clock Synchronization

1. Deterministic  assumes an upper bound on 
transmission delays (which bounds 
accuracy) – guarantees some precision

2. Statistical  expectation and standard 
deviation of the delay distributions are 
known

3. Probabilistic  no assumptions about delay 
distributions (gives better accuracy)

Realistic?

Reliable?

Any guarantees?



Today...

We will discuss two papers that solve ICS:
 Optimal Clock Synchronization [Srikanth and 

Toueg ’87]
 Assume reliable network (deterministic)
 Provide logical clock with optimal agreement
 Also optimal with respect to failures

 Probabilistic Internal Clock Synchronization 
[Cristian and Fetzer ’03]
 Drop requirements on network (probabilistic)
 Provide very efficient logical clock
 Only provide probabilistic guarantees
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Paper 1: System Model
We assume...

Clock drift is bounded

(1 – ρ)(t – s)  ≤ Hp(t) – Hp(s)  ≤  (1 + ρ)(t – s)

Communication and processing are reliable

trecv - tsend  ≤  tdel

Authenticated messages

will relax this later...



Paper 1: Our Goals

Property 1 (Agreement):
| Lpi(t) – Lpj(t) | ≤ δ, 

 (δ is the precision of the clock synchronization algorithm)

Property 2 (Accuracy):
 (1 – ρv)(t – s) + a  ≤  Lp(t) – Lp(s)  ≤  (1 + ρv)(t – s) + b



Paper 1: Our Goals

Property 1 (Agreement):
| Lpi(t) – Lpj(t) | ≤ δ, 

 (δ is the precision of the clock synchronization algorithm)

Property 2 (Accuracy):
 (1 – ρv)(t – s) + a  ≤  Lp(t) – Lp(s)  ≤  (1 + ρv)(t – s) + b

What is optimal accuracy?
ρv  ≠  ρ 



Paper 1: Our Goals

Optimal Accuracy
 Drift rate of the synchronized clocks is bounded 

by the maximum drift rate of correct hardware 
clocks

Fault-tolerant
 Up to f crash failures, performance failures, 

arbitrary (Byzantine) failures

ρv  =  ρ 
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Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

kP + α

Synchronize!



Achieving Optimal Accuracy

Uncertainty of tdelay introduces a difference in the logical 
time between resynchronizations 

 Reason for non-optimal accuracy

Solution:
 Slow down the logical clocks by a factor of 

where β = tdel / (2(1 + ρ))

P
(P - α + β)



Authenticated Messages

Correctness: 
 If at least f + 1 correct processes broadcast messages by time 

t, then every correct process accepts the message by time t + 
tdel

Unforgeability:
 If no correct process broadcasts a message by time t, then no 

correct process accepts the message by t or earlier
Relay:

 If a correct process accepts the message at time t, then every 
correct process does so by time t + tdel



Nonauthenticated Algorithm

Replace signed communication with a 
broadcast primitive 
 Primitive relays messages automatically
 Cost of O(n2) messages per resynchronization

New limit on number of faulty processes 
allowed:
 n > 3f



Broadcast Primitive

(echo, round k)



Broadcast Primitive

(echo, round k)

Received f + 1 
distinct 
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Broadcast Primitive

(echo, round k)

Received f + 1 
distinct 

(init, round k)!

1

Received f + 1 
distinct 

(echo, round k)!

2

Received 2f + 1 
distinct 

(echo, round k)!
Accept (round k)

3



Initialization and Integration

Same algorithms can be used to achieve initial 
synchronization and integrate new processes 
into the network
 A process independently starts clock Co

 On accepting a message at real time t, it sets 
 C0(t) = α

“Passive” scheme for integration of new 
processes



Paper 2: Why try another approach?

Traditional deterministic fault-tolerant clock 
synchronization algorithms:
 Assume bounded communication delays
 Require the transmission of at least N2 messages 

each time N clocks are synchronized
 Bursty exchange of messages within a narrow re-

synchronization real-time interval



Probabilistic ICS

Proposes family of fault-tolerant internal clock 
synchronization (ICS) protocols
Probabilistic reading achieves higher precisions 
than deterministic reading
Doesn’t assume unbounded communication 
delays
Use of convergence function optimal accuracy

Claims:



Their approach

Only requires to send a number of unreliable 
broadcast messages
Staggers the message traffic in time
Uses a new transitive remote clock reading 
method

Number of messages in the best case: N + 1

(N time server processes)
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Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

min ≤ t(m2) ≤ (T2 – T0)(1 + ρ) - min 
max(m2)(1 + ρ) + min(m2)(1 - ρ)

2Cq = T1 +

p

q
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T1

m1 m2

p

q

Is error  ≤  Λ ?
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No? Try reading again 
 (Limit: D)



Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

p

q

Is error  ≤  Λ ?
Yes: Success
No? Try reading again 
 (Limit: D)

Maximum 
acceptable clock 
reading error



Staggering Messages

p

q

r

cycle

slot

p slots per cycle
k cycles per round



Transitive Remote Clock Reading

Can reduce the number of messages per round to N + 1
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Transitive Remote Clock Reading

Can reduce the number of messages per round to N + 1

p

q

r

T

Cr (T,p)

Cq (T,p)

tp

Cr (T,q)

T

tq
real time

Cr (T,q) = Cr (T,p) + T - Cq (T,p)Cannot be used when arbitrary failures can occur!



Round Message Exchange Protocol



Round Message Exchange Protocol

Request Mode

Clock times:

p     q      r

?     ?     ?

?     ?     ?

request messages

  t
err



Round Message Exchange Protocol

Reply Mode

Clock times:

p     q      r

10 11   10
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?     ?     ?

?     ?     ?

request messages

  t
err



Round Message Exchange Protocol

Finish Mode

Clock times:

p     q      r

10 11   10

1     1      2

finish messages

  t
err

Reply Mode

Clock times:

p     q      r

10 11   10

?     ?     ?

reply messages

  t
err

Request Mode

Clock times:

p     q      r

?     ?     ?

?     ?     ?

request messages

  t
err



Outline of Algorithms

Round clock Cp
k of process p for round k:

Cp
k(t) = Hp(t) + Ap

k

Void synchronizer() {

    ReadClocks(..)

    A = A + cfn(rank(), Clocks, Errors)

   T = T + P  

}



Convergence Functions

Let I(t) = [L, R] be the interval spanned by at t 
by correct clocks. If all processes would set 
their virtual clocks at the same time t to the 
midpoint of I(t), then all correct clocks would 
be exactly synchronized at that point in time.

Unfortunately, this is not a perfect world!



Convergence Functions

Each correct process makes an approximation Ip 
which is guaranteed to be included in a bounded 
extension of the interval of correct clocks I: 

  IΛk(t) = [min{Cs
k (t) - Λ}, max{Cs

k (t) + Λ}]

Deviation of clocks is bounded by δ, so length of IΛk(t) is 
bounded by δ + 2Λ

 



Failure classes

Algorithm
Tolerated 
Failures

Required

Processes
Tolerated types 

of failures

CSA Crash F F + 1 Crash

CSA Read F 2F + 1 Crash, Reading

CSA Arbitrary F 3F + 1 Arbitrary, Reading

CSA Hybrid Fc, Fr, Fa 3Fa + 2Fr + Fc  + 1 Crash, Read., Arb.



Conclusions – Which one is better?

First Paper (deterministic algorithm)
 Simple algorithm
 Unified solution for different types of failures
 Achieves optimal accuracy
 Assumes bounded comunication
 O(n2) messages
 Bursty communication



Conclusions – Which one is better?
Second Paper (probabilistic algorithm)
 Takes advantage of the current working 

conditions, by invoking successive round-trip 
exchanges, to reach a tight precision)

 Precision is not guaranteed
 Achieves optimal accuracy
 O(n) messages



Conclusions – Which one is better?
Second Paper (probabilistic algorithm)
 Takes advantage of the current working 

conditions, by invoking successive round-trip 
exchanges, to reach a tight precision)

 Precision is not guaranteed
 Achieves optimal accuracy
 O(n) messages

If both algorithms achieve optimal accuracy, 

Then why is there still work being done?


