
Time

Lakshmi Ganesh
(slides borrowed from

Maya Haridasan,
Michael George)

The Problem

Given a collection of processes that can...
 only communicate with significant latency
 only measure time intervals approximately
 fail in various ways

... we want to construct a shared notion of
time

2

The Problem

Given a collection of processes that can...
 only communicate with significant latency
 only measure time intervals approximately
 fail in various ways

... we want to construct a shared notion of
time

But each process has a h/w clock, right??

2

What’s wrong with the clocks?

What’s wrong with the clocks?

Logical Clock = H/w clock +
Adjustment factor

External Vs. Internal Clock Synchronization

External clock synchronization:
‘Adjust’ clocks with respect to an
external time reference

Accuracy: how close logical time
is to real time

Internal clock synchronization (ICS):
‘Adjust’ clocks among themselves

Precision: how close the clocks are
to each other

Software Clock Synchronization

1. Deterministic  assumes an upper bound on
transmission delays (which bounds
accuracy) – guarantees some precision

2. Statistical  expectation and standard
deviation of the delay distributions are
known

3. Probabilistic  no assumptions about delay
distributions (gives better accuracy)

Software Clock Synchronization

1. Deterministic  assumes an upper bound on
transmission delays (which bounds
accuracy) – guarantees some precision

2. Statistical  expectation and standard
deviation of the delay distributions are
known

3. Probabilistic  no assumptions about delay
distributions (gives better accuracy)

Realistic?

Software Clock Synchronization

1. Deterministic  assumes an upper bound on
transmission delays (which bounds
accuracy) – guarantees some precision

2. Statistical  expectation and standard
deviation of the delay distributions are
known

3. Probabilistic  no assumptions about delay
distributions (gives better accuracy)

Realistic?

Reliable?

Software Clock Synchronization

1. Deterministic  assumes an upper bound on
transmission delays (which bounds
accuracy) – guarantees some precision

2. Statistical  expectation and standard
deviation of the delay distributions are
known

3. Probabilistic  no assumptions about delay
distributions (gives better accuracy)

Realistic?

Reliable?

Any guarantees?

Today...

We will discuss two papers that solve ICS:
 Optimal Clock Synchronization [Srikanth and

Toueg ’87]
 Assume reliable network (deterministic)
 Provide logical clock with optimal agreement
 Also optimal with respect to failures

 Probabilistic Internal Clock Synchronization
[Cristian and Fetzer ’03]
 Drop requirements on network (probabilistic)
 Provide very efficient logical clock
 Only provide probabilistic guarantees

6

Paper 1: System Model
We assume...

Clock drift is bounded

(1 – ρ)(t – s) ≤ Hp(t) – Hp(s) ≤ (1 + ρ)(t – s)

Communication and processing are reliable

trecv - tsend ≤ tdel

Authenticated messages

will relax this later...

Paper 1: Our Goals

Property 1 (Agreement):
| Lpi(t) – Lpj(t) | ≤ δ,

 (δ is the precision of the clock synchronization algorithm)

Property 2 (Accuracy):
 (1 – ρv)(t – s) + a ≤ Lp(t) – Lp(s) ≤ (1 + ρv)(t – s) + b

Paper 1: Our Goals

Property 1 (Agreement):
| Lpi(t) – Lpj(t) | ≤ δ,

 (δ is the precision of the clock synchronization algorithm)

Property 2 (Accuracy):
 (1 – ρv)(t – s) + a ≤ Lp(t) – Lp(s) ≤ (1 + ρv)(t – s) + b

What is optimal accuracy?
ρv ≠ ρ

Paper 1: Our Goals

Optimal Accuracy
 Drift rate of the synchronized clocks is bounded

by the maximum drift rate of correct hardware
clocks

Fault-tolerant
 Up to f crash failures, performance failures,

arbitrary (Byzantine) failures

ρv = ρ

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

real time t logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

Ready to
synchronize

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

Ready to
synchronize

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Ready to
synchronize

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Ready to
synchronize

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Synchronize!

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

Synchronize!

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

kP + α

Synchronize!

Authenticated Algorithm

P – logical time between resynchronizations

kth resynchronization - Waiting for time kP

logical time kP

kP + α

Synchronize!

Achieving Optimal Accuracy

Uncertainty of tdelay introduces a difference in the logical
time between resynchronizations

 Reason for non-optimal accuracy

Solution:
 Slow down the logical clocks by a factor of

where β = tdel / (2(1 + ρ))

P
(P - α + β)

Authenticated Messages

Correctness:
 If at least f + 1 correct processes broadcast messages by time

t, then every correct process accepts the message by time t +
tdel

Unforgeability:
 If no correct process broadcasts a message by time t, then no

correct process accepts the message by t or earlier
Relay:

 If a correct process accepts the message at time t, then every
correct process does so by time t + tdel

Nonauthenticated Algorithm

Replace signed communication with a
broadcast primitive
 Primitive relays messages automatically
 Cost of O(n2) messages per resynchronization

New limit on number of faulty processes
allowed:
 n > 3f

Broadcast Primitive

(echo, round k)

Broadcast Primitive

(echo, round k)

Received f + 1
distinct

(init, round k)!

1

Broadcast Primitive

(echo, round k)

Received f + 1
distinct

(init, round k)!

1

Received f + 1
distinct

(echo, round k)!

2

Broadcast Primitive

(echo, round k)

Received f + 1
distinct

(init, round k)!

1

Received f + 1
distinct

(echo, round k)!

2

Received 2f + 1
distinct

(echo, round k)!
Accept (round k)

3

Initialization and Integration

Same algorithms can be used to achieve initial
synchronization and integrate new processes
into the network
 A process independently starts clock Co

 On accepting a message at real time t, it sets
 C0(t) = α

“Passive” scheme for integration of new
processes

Paper 2: Why try another approach?

Traditional deterministic fault-tolerant clock
synchronization algorithms:
 Assume bounded communication delays
 Require the transmission of at least N2 messages

each time N clocks are synchronized
 Bursty exchange of messages within a narrow re-

synchronization real-time interval

Probabilistic ICS

Proposes family of fault-tolerant internal clock
synchronization (ICS) protocols
Probabilistic reading achieves higher precisions
than deterministic reading
Doesn’t assume unbounded communication
delays
Use of convergence function optimal accuracy

Claims:

Their approach

Only requires to send a number of unreliable
broadcast messages
Staggers the message traffic in time
Uses a new transitive remote clock reading
method

Number of messages in the best case: N + 1

(N time server processes)

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

p

q

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

p

q

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

(T2 – T0)(1 + ρ) = maximum bound (real time)
p

q

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

p

q

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

min ≤ t(m2) ≤ (T2 – T0)(1 + ρ) - min
p

q

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

min ≤ t(m2) ≤ (T2 – T0)(1 + ρ) - min
max(m2)(1 + ρ) + min(m2)(1 - ρ)

2Cq = T1 +

p

q

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

p

q

Is error ≤ Λ ?
Yes: Success
No? Try reading again
 (Limit: D)

Probabilistic Clock Reading

Basic Idea:

T0 T2

T1

m1 m2

p

q

Is error ≤ Λ ?
Yes: Success
No? Try reading again
 (Limit: D)

Maximum
acceptable clock
reading error

Staggering Messages

p

q

r

cycle

slot

p slots per cycle
k cycles per round

Transitive Remote Clock Reading

Can reduce the number of messages per round to N + 1

p

q

r

T

Cr (T,p)

Cq (T,p)

tp

Cr (T,q)

T

tq
real time

Transitive Remote Clock Reading

Can reduce the number of messages per round to N + 1

p

q

r

T

Cr (T,p)

Cq (T,p)

tp

Cr (T,q)

T

tq
real time

Cr (T,q) = Cr (T,p) + T - Cq (T,p)

Transitive Remote Clock Reading

Can reduce the number of messages per round to N + 1

p

q

r

T

Cr (T,p)

Cq (T,p)

tp

Cr (T,q)

T

tq
real time

Cr (T,q) = Cr (T,p) + T - Cq (T,p)Cannot be used when arbitrary failures can occur!

Round Message Exchange Protocol

Round Message Exchange Protocol

Request Mode

Clock times:

p q r

? ? ?

? ? ?

request messages

 t
err

Round Message Exchange Protocol

Reply Mode

Clock times:

p q r

10 11 10

? ? ?

reply messages

 t
err

Request Mode

Clock times:

p q r

? ? ?

? ? ?

request messages

 t
err

Round Message Exchange Protocol

Finish Mode

Clock times:

p q r

10 11 10

1 1 2

finish messages

 t
err

Reply Mode

Clock times:

p q r

10 11 10

? ? ?

reply messages

 t
err

Request Mode

Clock times:

p q r

? ? ?

? ? ?

request messages

 t
err

Outline of Algorithms

Round clock Cp
k of process p for round k:

Cp
k(t) = Hp(t) + Ap

k

Void synchronizer() {

 ReadClocks(..)

 A = A + cfn(rank(), Clocks, Errors)

 T = T + P

}

Convergence Functions

Let I(t) = [L, R] be the interval spanned by at t
by correct clocks. If all processes would set
their virtual clocks at the same time t to the
midpoint of I(t), then all correct clocks would
be exactly synchronized at that point in time.

Unfortunately, this is not a perfect world!

Convergence Functions

Each correct process makes an approximation Ip
which is guaranteed to be included in a bounded
extension of the interval of correct clocks I:

 IΛk(t) = [min{Cs
k (t) - Λ}, max{Cs

k (t) + Λ}]

Deviation of clocks is bounded by δ, so length of IΛk(t) is
bounded by δ + 2Λ

Failure classes

Algorithm
Tolerated
Failures

Required

Processes
Tolerated types

of failures

CSA Crash F F + 1 Crash

CSA Read F 2F + 1 Crash, Reading

CSA Arbitrary F 3F + 1 Arbitrary, Reading

CSA Hybrid Fc, Fr, Fa 3Fa + 2Fr + Fc + 1 Crash, Read., Arb.

Conclusions – Which one is better?

First Paper (deterministic algorithm)
 Simple algorithm
 Unified solution for different types of failures
 Achieves optimal accuracy
 Assumes bounded comunication
 O(n2) messages
 Bursty communication

Conclusions – Which one is better?
Second Paper (probabilistic algorithm)
 Takes advantage of the current working

conditions, by invoking successive round-trip
exchanges, to reach a tight precision)

 Precision is not guaranteed
 Achieves optimal accuracy
 O(n) messages

Conclusions – Which one is better?
Second Paper (probabilistic algorithm)
 Takes advantage of the current working

conditions, by invoking successive round-trip
exchanges, to reach a tight precision)

 Precision is not guaranteed
 Achieves optimal accuracy
 O(n) messages

If both algorithms achieve optimal accuracy,

Then why is there still work being done?

