[Lakshmi Ganesh

(slides borrowed from

Maya Haridasan,
Michael George)

e —

The Problem

Given a collection of processes that can...
B only communicate with significant latency
® only measure time intervals approximately

® fail in various ways

... we want to construct a shared notion of
time

The Problem

Given a collection of processes that can...

® Oon
® Oon

'y communicate with significant latency
'y measure time intervals approximately

m 3]

| In various ways

... we want to construct a shared notion of

time

But each process has a h/w clock, right??

?

B i e e

h the clocks

e

bttt ot vl e bl i e me et Sl Pt A . T T e]
A e e e e e e e R —— —d —— —— =

[
——

i

e S e

s
=
ol)
-
o
s
=
N

N Pty oy it el KAt o bl e e et il Jrt
e e S S ST

b/

1
1
1
1
1
1
.
1

L 1

0

0.5
3 R —
E (et S S S R

i [

B Ersensm

0.2

What

What’s wrong with the clocks?

Clock dirift

___ =1

Adjustment fa:ctor

" Logical Clock = H/w clock +

Tl = i T i [T o i [T e) ST o T T Y e e i e T =

10000 20000 20000 40000 BOOOO 60000 70000 80000 90000
Time (s)

External Vs. Internal Clock Synchronization

® External clock synchronization:
‘Adjust’ clocks with respect to an
external time reference

B Accuracy: how close logical time
1s to real time

® Internal clock synchronization (ICS):
‘Adjust’ clocks among themselves

Precision: how close the clocks are
to each other

Software Clock Synchronization

1. Deterministic = assumes an upper bound on
transmission delays (which bounds
accuracy) — guarantees some precision

Statistical = expectation and standard
deviation of the delay distributions are
known

Probabilistic =2 no assumptions about delay
distributions (gives better accuracy)

Software Clock Synchronization

1. Deterministic = assumes an upper bound on

transmission delays (which bound fic?
R a\\S
accuracy) — guarantees some precis

Statistical = expectation and standard
deviation of the delay distributions are
known

Probabilistic =2 no assumptions about delay
distributions (gives better accuracy)

Software Clock Synchronization
1. Deterministic = assumes an upper bound on

transmission delays (which bound fic?
R a\\S
accuracy) — guarantees some precis

Statistical = expectation and standard

lcirel\;iagon of the delay distributio
W

Probabilistic =2 no assumptions about delay
distributions (gives better accuracy)

Software Clock Synchronization
1. Deterministic = assumes an upper bound on

transmission delays (which bound fic?
R a\\S
accuracy) — guarantees some precis

Statistical = expectation and standard

1(ieviation of the delay distributior e\.‘a\,\e‘z

nown

Probabilistic = no assumptions about delav—

distributions (gives better acc
ANY

Today...

i We will discuss two papers that solve ICS:
®m Optimal Clock Synchronization [Srikanth and
Toueg '87]
® Assume reliable network (deterministic)
® Provide logical clock with optimal agreement
® Also optimal with respect to failures
B Probabilistic Internal Clock Synchronization
[Cristian and Fetzer ’03]
® Drop requirements on network (probabilistic)
® Provide very efficient logical clock
= Only provide probabilistic guarantees

Paper 1: System Model

We assume...
Clock drift 1s bounded

(1=p)t=s) <H()-Hys) = (1+p)(t-s)

Communication and processing are reliable

trecv = tsend < tdel

Authenticated messages

will relax this later...

Paper 1: Our Goals

®’ Property 1 (Agreement):
| L,(1) = L,(1) | = o,
(0 1s the precision of the clock synchronization algorithm)

®’ Property 2 (Accuracy):
(L-p)t—s5)+a = L(O-Ly(s) = (A+p)t—s)+b

Paper 1: Our Goals

®’ Property 1 (Agreement):
| L,(1) = L,(1) | = o,
(0 1s the precision of the clock synchronization algorithm)

®’ Property 2 (Accuracy):

(I p)t—s)ta = L(H)-Lys) = (1 +p)t-8)+b
tfpv 7P

What is optimal accuracy?

Paper 1: Our Goals

Optimal Accuracy

B Drift rate of the synchronized clocks 1s bounded
by the maximum drift rate of correct hardware
clocks

p, = p

i Fault-tolerant

® Up to f crash failures, performance failures,
arbitrary (Byzantine) failures

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

real time t logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

O

O Ready to
synchronize

» Q/
O

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

Ready to
synchronize

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

©

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

Ready to
synchronize

\

¢

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

©

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

X

=

logical time kP

O

Ready to
synchronize

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

O

f

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

Synchronize!

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

()
-

Synchronize!

o e

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

()

kP + o

-

Synchronize!

N
S 4

o e

logical time kP

P — logical time between resynchronizations

Authenticated Algorithm

k,, resynchronization - Waiting for time AP

()

kP + o

-

N

Synchronize!

e e kA AL

=4

()
/

a

-

logical time kP

P — logical time between resynchronizations

Achieving Optimal Accuracy

Uncertainty of ¢, introduces a difterence in the logical

time between resynchronizations

—> Reason for non-optimal accuracy

® Solution:
® Slow down the logical clocks by a factor of

/2
(P-o +p)

where B =1¢,,,/ (2(1 + p))

Authenticated Messages

B’ Correctness:

If at least f + 1 correct processes broadcast messages by time
t, then every correct process accepts the message by time 7 +

L el
& Unforgeability:

If no correct process broadcasts a message by time ¢, then no
correct process accepts the message by ¢ or earlier

® Relay:

If a correct process accepts the message at time ¢, then every
correct process does so by time ¢ + ¢,

Nonauthenticated Algorithm

’ Replace signed communication with a
broadcast primitive

B Primitive relays messages automatically
® Cost of O(n°) messages per resynchronization

New limit on number of faulty processes
allowed:

ln>3f

Broadcast Primitive

@ — (echo, round k)

Broadcast Primitive

Received f+ 1
\3 distinct
=5 \ (init, round k)!

@ — (echo, round k)

Broadcast Primitive [redwr

distinct
(echo, round k)!

Received f+1
distinct

\ (init, round k)!

@ — (echo, round k)

Broadcast Primitive [redwr

distinct
(echo, round k)!

Received f+ 1
distinct

2% \ (init, round k)!
&

Received 2f+ 1)
distinct
(echo, round k)!
Accept (round k)

.

@ — (echo, round k)

Initialization and Integration

B’ Same algorithms can be used to achieve 1nitial
synchronization and integrate new processes
into the network

® A process independently starts clock C°
® On accepting a message at real time ¢ 1t sets
C%t) =a
|’ “Passive” scheme for integration of new
Proccsscs

Paper 2: Why try another approach?

Traditional deterministic fault-tolerant clock
synchronization algorithms:

® Assume bounded communication delays

B Require the transmission of at least N2 messages
each time N clocks are synchronized

® Bursty exchange of messages within a narrow re-
synchronization real-time interval

= =
@ @

Probabilistic ICS

Claims:
B’ Proposes family of fault-tolerant internal clock
synchronization (ICS) protocols

B’ Probabilistic reading achieves higher precisions
than deterministic reading

® Doesn’t assume unbounded communication
delays

Use of convergence function > optimal accuracy

Their approach

B Only requires to send a number of unreliable
broadcast messages

B’ Staggers the message traffic in time

B Uses a new transitive remote clock reading
method

Number of messages in the best case: N + 1

(N time server processes)

Probabilistic Clock Reading

q

Basic Idea:

Probabilistic Clock Reading

Basic Idea:

Probabilistic Clock Reading

Basic Idea:

Probabilistic Clock Reading

Basic Idea:

Probabilistic Clock Reading

Basic Idea:

Probabilistic Clock Reading

Basic Idea:

min < t(m,) < (T2 -TO)(1 + p) - min

max(m,)(1 + p) + min(m,)(1 - p)
2

Cq=T1+

Probabilistic Clock Reading

Basic Idea:

/Is error < A?
~ Yes: Success

bo? Try reading again
Limit: D |
Hmit?)

Probabilistic Clock Reading

Basic Idea:

—

Maximum
/IS error < @ acceptable clock
_ Yes: Success reading error

No? Try reading again
(Limit: D)

Staggering Messages

slot

p slots per cycle
k cycles per round

Transitive Remote Clock Reading

#® Can reduce the number of messages per round to N + 1

L

real time
>

T

Transitive Remote Clock Reading

#® Can reduce the number of messages per round to N + 1

“QN

real time

3

¢, (1.p)

275 IO57 1 Qo ol

C.(T,p)

C.(T,qy)=C.(Tp)+T-C, (Tp)

Transitive Remote Clock Reading

#® Can reduce the number of messages per round to N + 1

L

real time
>

3

¢, (1.p)

275 IO57 1 Qo ol

C.(T,p)

Cannot be used when arbitrary failures can occur!

| I

Round Message Exchange Protocol

Round Message Exchange Protocol

Request Mode

Clock times:

q |r
BT A

@r.??

A request messages

Round Message Exchange Protocol

Request Mode

|\
)\
|y
‘ "" 5o
L |/ N
| -
soo0 O | =
e /h_--
7 i)
< SN
Fosesis ~
NGieE =

Clock times:

Qe Clock times:
{ : A

s S s
err 2 19

LTINS e T R TR T

A request messages er 2| 2 |2

4 reply messages

Round Message Exchange Protocol

Request Mode
A finish messages

Reply Mode
Finish Mode \

Clock times:

Qe Clock times:
{ : A

s S s Clock times:
err 9 2
LGNS T TR BT Vot

A request messages er A 11

A

4 reply messages bi

Outline of Algorithms

Round clock C ¥ of process p for round :

CK(t) = H (t) + Ak

/

Void synchronizer() {

ReadClocks(..)

A=A+ cfn(rank(), Clocks, Errors)
T=T+P

\

Convergence Functions

®’ Let I(z) = [L, R] be the interval spanned by at ¢
by correct clocks. If all processes would set
their virtual clocks at the same time ¢ to the
midpoint of /(¢), then all correct clocks would
be exactly synchronized at that point in time.

Unfortunately, this is not a perfect world!

Convergence Functions

Each correct process makes an approximation /,

which 1s guaranteed to be included 1n a bounded
extension of the interval of correct clocks /:

L(1) = [min{CL (1) - A}, max{C (1) + Aj]

Deviation of clocks is bounded by 0, so length of 7,%(?) is
bounded by 0 + 2A

Failure classes

Algorithm

Tolerated
Failures

Required
Processes

Tolerated types
of failures

CSA Crash

F

F+1

Crash

CSA Read

F

2F + 1

Crash, Reading

CSA Arbitrary

F

3F+1

Arbitrary, Reading

CSA Hybrid

3Fa + 2Fr + Fc +1

Crash, Read., Arb.

Conclusions — Which one 1s better?

® First Paper (deterministic algorithm)
® Simple algorithm
® Unified solution for different types of failures
® Achieves optimal accuracy
B Assumes bounded comunication
B O(n’) messages
® Bursty communication

Conclusions — Which one 1s better?

B Second Paper (probabilistic algorithm)

m Takes advantage of the current working
conditions, by invoking successive round-trip
exchanges, to reach a tight precision)

® Precision 1s not guaranteed
® Achieves optimal accuracy
B ()(n) messages

Conclusions — Which one 1s better?

B Second Paper (probabilistic algorithm)

m Takes advantage of the current working
conditions, by invoking successive round-trip
exchanges, to reach a tight precision)

® Precision 1s not guaranteed
® Achieves optimal accuracy
B ()(n) messages

If both algorithms achieve optimal accuracy,

Then why is there still work being done?

