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H a r p  u s e s  t h e  p r i m a r y  c o p y  r e p l i c a t i o nAbstract
technique [1, 26, 27]. In  this method, client calls are
directed to a single primary server, which communicatesThis paper describes the design and implementation of the
with other backup servers and waits for them to respondHarp file system. Harp  is a replicated Unix file system
before replying to the client. The  system masks failures byaccessible via the VFS interface.  It provides  highly avail-
performing a failover algorithm in which an inaccessibleable and reliable storage for files and guarantees that file
server is removed from service.  When  a primary performsoperations are executed atomically in spite of concurrency
an operation, it must inform enough backups to guaranteeand failures.  It uses a novel variation of the primary copy
that the effects of that operation will survive all subsequentreplication technique that provides good performance be-
failovers.cause it allows us to trade disk accesses for network com-

Harp is one of the first implementations  of a primarymunication. Harp is intended to be used within a file ser-
copy scheme that runs on conventional  hardware.  It hasvice in a distributed  network; in our current implemen-
some novel features that allow it to perform well.  The keytation, it is  accessed via NFS.  Preliminary performance
performance issues are how to provide quick response  forresults indicate that Harp provides equal or better response
user operations and how to provide  good system capacitytime and system capacity than an unreplicated implemen-
(roughly, the number of operations the system can handletation of NFS that uses Unix files directly.
in some time period while still  providing good response
time). Harp achieves good performance by recording the1. Introduction
effects of modification operations in a log that resides  in
volatile memory; operations in the log are applied to the

This paper describes the replication technique used in the file system in the background.  Essentially, it removes disk
Harp file system.  (Harp is a Highly Available, Reliable, accesses from the critical path, replacing them with com-
Persistent file system.)  Harp provides highly available and munication (from the primary to the backups), which is
reliable storage for files:  With very high probability, infor- substantially faster if the servers are reasonably close
mation in files will not be lost or  corrupted, and will be together.
accessible when needed, in spite of failures such as  node

In using the log to record recent modifications, Harp isand media crashes and network partitions.  All  modifica-
relying on a write-behind strategy, but the strategy is  safetions to a file are reliably recorded  at several server nodes;
because log entries are not lost in failures.  We equip eachthe number of nodes depends on how many failures the file
server with a small uninterruptible power supply (UPS) thatis intended to survive. We  take advantage of replication to
allows it to run for a short while (e.g., a few minutes) afterprovide a strong semantics for file operations:  each opera-
a power failure; the server uses this  time to copy infor-tion is performed atomically in spite of concurrency and
mation in the log to  disk.  The combination of the volatilefailures.
log and the UPS is one of the novel features of Harp.

Harp provides reliable storage for  information.  Infor-
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failures by techniques explained later in the paper.
Harp supports the virtual file system (VFS) [19] interface.

It guarantees that operations have really  happened when
they return, i.e., their effects will not be lost in  subsequent



failovers. In fact, all operations in Harp are implemented assumptions about the environment.  Section 4 describes
atomically: an operation either completes entirely, or has the replication technique how the system works in both
no effect, in spite of concurrency and failures. the normal case and in the presence of failures.  Section 5

describes the current status of the  implementation, givesHarp is intended  to be used within a file service in a
performance measurements for various benchmarks, anddistributed network, such as NFS  [31, 35] or AFS  [17].
compares the performance of Harp  with the standard im-The idea is that users continue to use the file service just as
plementation of NFS in our environment.  We concludethey always did. However, the server code of the file ser-
with a discussion of what we have accomplished.vice calls Harp (via the VFS interface) and achieves higher

reliability and availability as a result.  Harp makes calls to
low-level Unix file system operations.  Thus, the Harp code 2. Related Work
is just a small layer in the overall system, as illustrated in
Figure 1-1. As mentioned, we make  use of work on replication

techniques [4], especially the primary copy  technique
[1, 11, 26, 27], view change  algorithms [10, 9, 13], and
schemes that use witnesses [21, 28]. One  of the  first im-
plementations of primary copy replication appears in
Tandem’s NonStop System [2, 3]. The  NonStop System
significantly differs from Harp in its use of special-purpose
hardware (e.g., dual interprocessor bus, dual port disk con-
trollers, and mirrored disks). The  idea of using a UPS to
avoid the delay of writing the log to disk appears in  [7],
where it  is used in conjunction with a voting
algorithm [12].

The related file system work can be divided into three
categories: projects that provide a new file system, projects
that support NFS or VFS, and projects that use logs but not
replication.

File systems like Locus  [37], Coda  [32], and Echo  [16]
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differ from our work because  they are complete network
file systems with their own (non-Unix) semantics.  These

Figure 1-1: Harp System Structure systems involve both client and server code, and use client
caching to improve performance.  Harp  runs only at theIn the current implementation, users use Harp  via NFS.
server, and is independent of any caching that may occur atWe guarantee that the combination  of the NFS code and
the client (in fact, most  NFS implementations do clientHarp appears to the  user to behave like an unreplicated
caching).NFS system; as discussed in Section 4.5, this requires a

For the purposes of comparison what is interesting aboutlittle more work than just implementing the VFS calls cor-
these systems is their replication techniques.  The Echorectly. Harp can be used with any VFS-based  NFS server
system, which is currently under development, uses aimplementation, and should be portable to most  Unix sys-
primary-copy scheme with a write-ahead log that is writtentems. We believe it can also be used by other network file
directly to disk Echo can be configured to have a primarysystems that use VFS, or similar systems, such as  the
and backups with separate disks, but it allows other con-ULTRIX generic file system [29], but we have not yet in-
figurations (e.g., just a primary, or a primary and  backupvestigated such a use.
that share a disk).This paper describes how replication works in Harp and

Coda and Locus use replication  to improve bothprovides some preliminary information on system perfor-
availability and response time.  Files have  many replicas;mance. The portion of Harp that handles processing of user
clients can send requests to any replica, and operations areoperations has been implemented; we are working now on
performed without synchronization. T h e  lack ofthe failover code. The  performance data indicate that Harp
synchronization means that file system state may becomewill perform well:  in the experiments, Harp performs  as
inconsistent if there are concurrent modifications on thewell or better than an unreplicated implementation of NFS
same file.  The systems use a multipart timestamp schemethat uses Unix files directly both in terms of response time
to detect consistency problems, which must then beto users and in overall system capacity.  The  results show
resolved by users.  (Coda  also allows "disconnectedthat high availability can be achieved without  degradation
operations", in which a client node can make changes to aof performance by using a small amount of  additional
file while it is disconnected from the network; again incon-hardware (extra disks to hold the extra file copies, and
sistencies are detected using the multipart timestamps.)  InUPS’s).
contrast, Harp uses replication only to provide  availabilityThe remainder of the paper  is organized as follows.  We
and reliability and it ensures consistency of the file systembegin by discussing related work, and then  describe our



state. It provides performance by spreading the load so that accept such messages, carry out the request, and if needed
different servers act as primaries for different file systems. return a response in a message to the client.  Harp  runs at

server nodes.  Ideally  the servers would run only the fileThere are several projects that provide high availability
system (including perhaps some additional processes thatfor NFS or VFS. The  HA-NFS system [5] uses a variant of
monitor system behavior).  The restriction is  not requiredthe primary copy scheme with a write-ahead log to provide
by our algorithm but would allow us  to provide betterhigh-availability and atomicity, but the log  is written
response to clients.  Also, the servers will be more robust ifdirectly to disk (or disks), which are shared by  the primary
they do not run user code.and backup, and the system as a whole does  not handle

partitions (it runs on a local area network).  Since the log is Each server node is equipped with a UPS, which allows it
written to disk, the performance  of HA-NFS for writes is to continue to run for a brief  period after a power failure.
worse than unreplicated NFS (since the modifications are An alternative is to use a battery backed-up memory; the
also written to the file copies on disk later) and we expect it node stops running but the memory  contents survive the
will be worse than Harp’s.  In addition,  HA-NFS’s reliance failure. We chose to use UPS’s  because they are cheap,
on hardware to determine which node is the primary makes available, processor independent, and provide some protec-
it less flexible (e.g.,  in providing differing numbers of tion against power surges. In  addition, UPS’s allow us to
backups) .  The Deceit system  [22] also provides high provide uninterrupted service across short power failures,
availability within NFS but uses a different replication which are quite common in our experience.
method, namely ISIS [6]; we expect to achieve better per-
formance. (For example, Deceit has higher overhead than 4. Replication Method
HA-NFS [5].) T h e  Ficus system  [14] supports  high
availability for VFS.  It uses the same replication scheme as

In this section we describe the replication technique usedLocus, and therefore inconsistencies in file system state are
in Harp and the most  important and interesting implemen-possible.
tation details.  Our aim is to convey how the approach

Finally, some file systems  [15, 18, 30] have  used the meets our goals of providing both  good behavior
write-ahead log technique within a server.  These  systems (atomicity, high availability and reliability) and good per-
provide atomic file operations and they speed up  recovery formance.
by avoiding the need for scavenging after a crash (e.g., by

We begin by giving an overview of our approach.  Sec-running the Unix fsck utility).  We also do not need to
tion 4.2 describes how the system behaves in the absence ofscavenge, but fast recovery of a single node is not a major
failures Section 4.3 describes the failover mechanism; itissue for us since Harp continues to  provide service while
also states the system requirements and discusses how wethe node is recovering.  Some  of these systems  [15, 18]
satisfy them. Section 4.4 provides additional detail on howwrite the log synchronously to disk,  which reduces
we meet our atomicity requirement.  The  last section dis-response time and system capacity. Avoiding this write, as
cusses some higher-level issues.is done in [30], means that effects of committed operations

can be lost when there is a crash. We  avoid this loss by the 4.1. Overview
combination of replication (for single failures) and the
UPS’s and other techniques (for simultaneous failures). We use a primary copy method  [1, 11, 26, 27] as  our

replication technique. This  technique was developed for
use in general transaction systems.  We have  adapted it to3. Environment
match the needs of this application.  We take advantage of
the fact that even though each individual file system opera-

Harp is intended to run in an environment consisting of a tion must run atomically, support for transactions contain-
distributed collection of nodes that communicate by means ing several operations is not needed.  In addition,  we have
of a network. The  network might be a local area net  or a incorporated the use of a volatile log into the technique.
geographically distributed net such as the Internet.  Nodes

In any replication method, any particular file is managedfail by crashing.  Crashes  may occur because of power
by a group of servers that store copies of the file andfailures, software errors, or hardware failures.  The network
respond to user requests.  In a primary copy method, one ofmay lose or duplicate messages, or deliver them late  or out
these servers acts as the primary, and client requests areof order; in addition it may partition so that some nodes are
sent just to it.  The primary decides what to  do and com-temporarily unable to send messages to some other  nodes.
municates with the other servers in  the group as needed;As is usual in distributed systems, we assume the nodes are
these other servers are the backups.fail-stop processors [33] and the network delivers only un-

Modification operations require a two-phase protocol.  Incorrupted messages.  We assume that  nodes have clocks
phase 1, the primary informs the backups about the opera-that are loosely synchronized with  some skew .
tion. When the backups acknowledge receipt of this infor-Synchronized clocks are maintained by a  clock
mation, the operation can commit.  At  this point thesynchronization protocol [23] that provides a skew of  less
primary returns any results; the second phase, in which thethan a hundred milliseconds.
backups are informed about the commit, happens in theSome nodes are servers and others are clients. Clients
background. In traditional primary copy schemes,  opera-send messages to servers to request some service; servers



tions that do not involve modifications to  the file system 4.2. Normal Case Processing
also require communication with the backups, but we use a

The primary maintains a log in volatile memory in whichnovel technique (described in Section 4.2) that allows these
it records information about modification operations.  Theoperations to be done entirely at the primary.
log contains a sequence of event records; each recordWhen a failure or a recovery from a  failure occurs, the
describes an operation, and records at higher  indicesgroup runs a fai lover protocol  cal led a view
describe more recent operations.  Some records  are forchange [9, 10, 13]. The  result of a view change is a reor-
operations in phase 1, while others are for operations thatganization within the group, in which a failed node  is
have committed.  The primary distinguishes between theseremoved from service, or a recovered node is put back into
by maintaining a commit point, or CP; this is  the index ofservice. The result of such a reorganization is called a
the latest committed operation.  Operations commit in theview; one of the nodes in a view is the primary of that view
order of their records in the log.and the others are  backups.  The primary of the new view

To carry out a modification operation, the primary createsmay be a different node than the primary of  the old view.
an event record that describes the  modification, appends itWhen the primary changes, client  requests need to be
to the log, and sends the logged information to  the backup.directed to the new primary.  We discuss how  this happens
The backup also maintains a log. As  new log entries arrivein Section 4.5.
in messages from the primary, the backup appends them toAs with any  replication scheme that tolerates network
its log and sends an acknowledgment  message to thepartitions, we require 2n + 1 servers in order to continue to
primary. A backup only accepts the records in log order, soprovide service to clients in the presence of n  server
that an ack for entry n indicates that all records  up to andfailures [4]. For  example, to continue to provide access to
including entry n have been received.files in the case of any single  failure, there must be three

When the acknowledgment arrives from the backup, theservers. Traditional replication methods keep file copies at
primary commits the operation by advancing its  CP, andall 2n + 1 servers.  However,  we store only n + 1 copies,
returns any results.  The primary sends its CP in each mes-since this is  enough to allow information to survive n
sage to the  backup.  The backup also maintains a CP infailures. The other n servers need  to participate in view
which it stores the largest CP it has received in messageschanges concerning that file to ensure  that only one new
from the primary.view is selected, even when there is a network partition, but

they do not store copies of the file.  We call these ad- Both the primary and the backup maintain copies of the
ditional servers witnesses following the terminology file systems managed by the group on disk.  However, the
in [28], where the idea was first proposed. modifications described in an event record are not applied

to the primary or backup’s file system until after they com-In Harp, each replica group manages the files of one or
mit, i.e., until their entry number is less than or equal to themore Unix file systems, i.e., for a  particular file system, all
CP, and therefore we are  using a write-ahead log  [4].files will have copies at the same group.  One of the servers
Event records for committed operations are applied to theis the designated primary (this means it  will act as the
file system in the background.  This work  is carried out byprimary whenever it  can).  Another n servers are

1a separate apply process. The apply process performs thedesignated backups.  The  remaining n servers are the
file system reads and writes needed to carry out the event’sdesignated witnesses.  Only  the designated primary and
operation by using asynchronous Unix file  system opera-backups store copies (on disk) of the files in the file  sys-
tions. It processes the event records in log order and main-tems managed by that group.
tains a counter called the application point, or AP, thatA good way to organize  the system is to arrange the
records its progress.groups so that each node acts as the designated primary of

The apply process does not wait for  the writes associatedone group, the designated backup of another, and the desig-
with one event record to happen before moving on  to thenated witness of a  third.  In this way the workload can be
next. Instead the actual writing to disk is carried out by thedistributed among the servers; if the load becomes  un-
Unix file system in the background.  Another Harp processbalanced, the system can be  reconfigured, e.g., to move a
keeps tracks of which writes have completed.  It maintainsfile system from one group to another.
a lower bound pointer called the LB; all records with in-In the current implementation, groups have three mem-
dices less than or equal to the  LB have had their effectsbers. Such a group has  a designated primary, one desig-
recorded in the file system on disk.nated backup, and one designated witness, and in any  view

Records are removed from the log when they have  beenthere will be a primary and a single backup.  Harp  must
recorded on the disk copies of the file system at both thehave at least three servers, but there can be more, e.g., four
primary and backup.  Primaries and backups send theirservers supporting four different three-server groups.  Al-
LB’s in messages to one another.  Each maintains  a globalthough our algorithms will work for groups of other sizes,
LB, or GLB, which is the lower bound on what it knows  ofto simplify the discussion we consider only three-member

groups in the rest of this paper.

1The Harp implementation runs at kernel level and consists of  several
processes.



the current LB’s for itself  and its partner, and discards log curs when the ordering of operations  inside a system does
entries with indices less than or equal to its GLB.  The not agree with the order a user expects.  It  requires com-
volatile state at the servers is summarized in Figure 4-1. munication outside of the file system, e.g.,  one user telling

another about a change in a file.)Harp runs with a bound on the size of the log.  When  the
log gets close to full,  Harp forces the completion of writes We make a  violation of external consistency unlikely by
for some portion of the records beyond the  current LB. using loosely synchronized clocks [23]. Each  message
This allows the GLB to advance so that  earlier portions of from the backup to the primary contains a time equal to  the
the log can be discarded.  We delay forcing since this backup’s clock’s time + ; here is a few hundred mil-
makes it more likely that new operations can be performed liseconds. This time represents a promise by the backup
using information in primary memory.  Therefore, we ex- not to start a new view until that time  has passed; we ex-
pect the number of event records in the log to be large. pect that starting a new view will not be delayed, however,

because seconds will have elapsed by the time the new
view is ready to run.  The primary needs to  communicate
with the backup about a read  operation only if the time of

2its local clock is greater than the promised time. When a
new view starts, its new primary cannot process any
modification operations until the time of its clock is greater
than the promised time of the backup in the previous  view.
In this way we guarantee that writes in  the new view hap-
pen after all reads in older views unless clocks get out of
synch, which is highly unlikely.

Almost all Unix file system operations modify the file
system state.  In particular, file reads are  modification
operations because they update the file’s "time last
accessed" field.  By treating a file  read as a modifier, we
can ensure that this  time is always consistent with what
users expect, but at a high cost:  we must  communicate
with the backup as well as read the file.  The communica-
tion time can be masked if the information to be read is not
in primary memory, but otherwise reads will be slower thanFigure 4-1: Volatile State at a Server
in an unreplicated system, since the primary will need to
wait for the  acknowledgment from the backup beforeWhen a server recovers from a failure, the log will be
returning the results.used to bring it up to date.  Since  only committed opera-

tions are applied to the file  system (at the primary and the Unix applications rarely make use  of the "time last
backup), the log is a redo log [4]: the  records contain only accessed" field.  Therefore, we allow Harp to be configured
sufficient information to redo the operation after a failure. in two different  ways.  File reads can be treated as
Using a redo  strategy simplifies the implementation since modification operations if desired. Al te rna t ive ly , we
we avoid logging the additional information that would be provide a weaker implementation in which an event record
needed to undo operations after a failure. is added to the log for the file read, but the  result is

returned before the event record commits.  The  "time lastOperations that do not modify file system state (e.g., get
accessed" in such a record is chosen to be  greater than thatfile attributes) could be handled  similarly to modification
of any committed conflicting write, but earlier than that ofoperations by making entries in the log  and waiting for the
any uncommitted conflicting write.  Since the read returnsacknowledgment from the backup, but this seems unneces-
before its event record is sent to the backup, there is a smallsary because such operations do not change anything.  In-
chance that the event record will be lost if there is a failure,stead, Harp performs non-modification operations entirely
causing the "time last accessed" for the file to  be visiblyat the primary.  Such operations are performed as soon as
inconsistent across a view change.they arrive; their results reflect all committed writes and no

uncommitted writes.  (I.e., they are serialized at the CP.)
4.3. View Changes

Doing non-modification operations just at the primary
can lead to a problem if the network partitions.  For  ex- The requirements for the Harp implementation, including
ample, suppose a network partition separates the primary both normal case processing and view changes, are the fol-
from the backup, and  the backup forms a new view with lowing:
the witness. I f  the old primary processes a non- • Correctness. Operations must appear to be ex-modification operation at this point, the result returned may ecuted atomically in commit order.not reflect a write operation that has  already committed in
the new view.  Such a situation does not  compromise the

2Actually, the primary needs to account for the clock skew also.  Itstate of the file system, but it can lead to a  loss of external
needs to communicate with the backup if its current time is greater than orconsistency [13]. (A  violation of external consistency oc-
equal to the promised time - , where is the clock skew.



memory. The witness sends its LB to  the primary and• Reliability. The  effects of committed opera-
advances its GLB in the usual manner, but it  does not dis-tions must survive all single failures and likely
card log entries below the GLB.simultaneous failures.

There are several points to notice about this approach.• Availability. We  must continue to provide ser-
First, because of the way the witness’  log is initializedvice when any two group members are up and
when it is promoted, we can bring  a node that has notcan communicate, provided we can do so
suffered a media failure up to date by just restoring its logwhile preserving the file system state correctly.
from the witness’ log.

• Timeliness. Failovers must be done in a timely Second, every committed operation is  recorded at two
manner, and furthermore, failovers in common servers even in a view with a promoted witness.  Thus we
cases (a single failure  or recovery from a are providing stable storage [20] for committed operations.
single failure) must be fast, in  the sense that (We differ from Echo  [16] here;  Echo provides stable
the time during which users cannot use the sys- storage only in  views that do not include a promoted
tem is very short.  Ideally,  the failover should witness.) Stable storage is most important in a  view that
be invisible, so that the user does not notice lasts a long time, since the probability of a second failure
any loss of service. increases with time.

This section describes our view change  algorithm and Third, if a view with a promoted witness lasts a very long
how Harp satisfies the preceding requirements.  We assume time, the log may become so large that keeping information
t h e  r e a d e r  i s  f a m i l i a r  w i t h  v i e w  c h a n g e in this form is no longer practical.  A  log can be processed
algorithms [9, 10, 13] and focus on what is original in  our to remove unneeded entries, e.g., if a file is deleted, we can
approach. We note that view change algorithms are robust remove all entries concerning that file (except the deletion)
in the face of problems  such as failures in the middle of a from the log, but  even such processing may not be suf-
view change, or several nodes trying to cause a  view ficient to keep the log size practical.  In such a case, the
change simultaneously. Since  the implementation of the best solution may be  to reconfigure the system, changing
view change algorithm is not complete, the  discussion is the group membership, and bringing a different node  into
somewhat speculative. the group to take over the role of the missing member.

This new member would have its file system state  initial-As mentioned, group members always run within a par-
ized by the view change algorithm.ticular view. A  view has a unique view number, and later

views have larger numbers.  Each group member keeps its Now we briefly discuss view changes.  A  view change
current view number on disk.  When a view is  formed (as selects the members of the new view and makes sure that
discussed below), it contains at least two group members, the state of the new view reflects all committed operations
one of which acts as primary and the other as backup.  If from previous views.  Although the situation leading to a
the designated primary is a member of the view,  it will act view change may cause a view change in more than one
as primary in that view; otherwise the  designated backup group (e.g., the one where the failed node is  the designated
will be the primary.  The designated  witness will act as the primary and the one where  it is the designated backup),
backup in any view that is missing one of the two others; in each group does a view change separately.
this case, we say  the witness has been promoted.  A The designated primary and backup monitor other group
promoted witness will be demoted in a later view change members to detect  changes in communication ability; a
leading to a view that contains the designated primary  and change indicates that a view  change is needed.  For ex-
backup. ample, a designated primary or backup might notice that it

A witness takes part in normal processing of  file opera- cannot communicate with its partner in the current view or
tions while it is promoted.  A  promoted witness appears that it can communicate after not being able to.  The  wit-
just like a backup as far as the primary of its view can tell, ness does not monitor the  other group members, and it
but it differs from a backup in two important ways: never starts view changes.  To avoid  the case of simul-

taneous view changes (e.g., after recovery from a power1. Since it has no  copy of the file system, it
failure), we delay the designated backup so  that the desig-cannot apply its committed operations to the
nated primary will be highly likely to accomplish the viewfile system.
change before the backup can interfere.  (It’s desirable to

2. It never discards entries from its log. avoid simultaneous view changes since they slow down the
When a witness is promoted it receives all log records that failover.)
are not guaranteed to have reached  the disks at both the User operations are not serviced during a view change, so
designated primary and backup.  It appends new entries to we want view changes  to be fast.  A view change will be
this log as the view progresses, retaining the entire log until slow if some group member needs to receive lots of infor-
it is demoted.  Older  parts of its log are stored on a non- mation in order to get up to  date.  To avoid this potential
volatile device; we are planning to use tape  drives for wit- delay, nodes try to get up to date before a view change.  A
ness log storage in our initial system.  The witness’  LB is designated primary or backup that has just recovered from
the index of the highest log record that  it has written to a crash, or has just noticed that it is  able to communicate
tape; only log entries above the LB are kept in volatile with other group members after not being able to, brings



itself up to date by communicating with another group failure, nor when there is a  power failure (because of the
member. It communicates with the witness if its disk infor- UPS’s). Harp also survives  some simultaneous double
mation is intact.  Otherwise it communicates with the failures. For example, both the  designated primary and
designated primary or backup, which responds by sending backup can lose their volatile memory provided the witness
its file system state, and then gets (a portion of) the log is promoted and its state is intact.  Simultaneous  failures
from the witness.  Once such a group member is up to date, are unlikely, except possibly for a software bug that  causes
it initiates a view change; it is only at  this point that both the primary and  the backup to crash.  We guard
processing in the current view is halted. against the effects of a "killer packet" that causes all nodes

that receive it to crash by modifying Unix so that a portionA view change is a two-phase process; the node that starts
of volatile memory survives a soft crash.  We  keep ourit acts as the coordinator. In  phase one the coordinator
system state in this part of volatile memory, and use it tocommunicates with the other group members. If  a member
restart without loss of information after such a  crash.  Weagrees to form the new view (it will always agree  unless
also use the following "conservative" approach  to makeanother view change is in progress), it stops processing
other simultaneous software errors unlikely.  A backupoperations and sends the coordinator whatever state  the
only applies an event record after it has already been ap-coordinator does not already have.  Usually,  just a few
plied successfully at the primary. To  accomplish this, therecords from the top of the log will be  sent (because the
primary sends its AP in messages to the backup, and wecoordinator is already up to date).
preserve the following invariant:The coordinator waits for messages from other group

members indicating that they agree to form the new view, AP APbackup primary
and then attempts to form the initial state for the new view.

Delaying application at the backup means that an  error inThis attempt will succeed provided the state at the end of
our code that causes the primary to  crash is unlikely tothe previous view is intact; the initial state of the new  view
show up at the backup until after a view change.  At thiswill be the final state of  the previous view.  Since the
point, we at least have the log at the witness, so  eventprevious view started from the final state of the view before
records for committed operations will not be lost; in ad-it, and so on, we can be sure that all effects of operations
dition, the log should be useful  to the programmer whothat committed in earlier views will  be known in the new
analyzes and corrects the error.view.

Now let’s look at the timeliness  requirement in the twoIf the coordinator succeeds in forming the  new state, it
cases of special interest:  a single failure,  and recoveryenters phase 2 of the view change  protocol.  It writes the
from a single failure. If  the designated primary or backupnew view number to disk and informs the nodes that
fails, the remaining one becomes the coordinator  and theresponded in phase 1 about any  parts of the initial state of
witness is promoted.  The information sent to the witness inthe new view that they do not already know.  If both other
phase 2 is  the log beyond the GLB.  Thus we require twonodes responded, the witness will be demoted; a  demoted
disk writes (to record the new view number) and  two mes-witness discards its log and its volatile information.  If only
sage round trips.  The  phase 1 messages are small.  Thethe witness responded, it will be promoted.  The other
size of the phase 2 message depends on the size of the partnodes write the new view number  to disk when they
of the log beyond the GLB; as mentioned, this  is likely toreceive the phase 2 message.
be large.  We can  avoid sending a big log to the witness in

Now let’s look at how Harp  satisfies its requirements. phase 2 by keeping the witness  as a "warm" standby.  The
Within a single view, correctness  is guaranteed because primary would send log records to the witness as well as
operations are applied in commit order.  As we have al- the backup, but the witness would not  acknowledgment
ready shown, a new  view is formed only if its state will these messages and would simply discard records from the
reflect all committed operations from previous views.  To bottom of its log when its log exceeded the maximum size.
complete the correctness argument, we must show that A "standby" witness does not write anything to tape.
Harp preserves correctness in the following two  cases.

Now suppose the designated primary or backup recoversFirst, application of an event record must have the same
from a failure.  First it will bring itself up to date by  com-effect at both the primary and the backup (since the backup
municating with another group member.  If  there has justmay become the primary in a  later view).  Second, some
been one failure, this group member will be accessible andevent records may be applied after a  view change even
a member of an active view.  If the recovering node has notthough they were already applied  (and their effects were
had a media failure, it will communicate with the witness;already reflected on disk) in an earlier view.  Such reap-
this is likely to have little, if any, impact on the speed  ofplication must be consistent with applying the sequence of
processing operations.  The witness  would keep new logcommitted operations exactly once. Section  4.4 explains
records on a different tape, or on disk, while it is readingthe information in events records guarantees correctness for
the old records from tape.  If the recovering node has had athese two cases.
media failure, it must communicate with the primary of the

We satisfy the availability requirement because Harp will current view, and then with the witness.  The  primary will
form a new view whenever it is legal to do  so.  We satisfy be able to continue processing operations while it sends the
the reliability requirement because Harp will not lose the file system state.  Thus users continue to receive  service,
effects of committed operations in the  face of any single but probably with a somewhat degraded response time.



After the recovering node is up to  date, it does the view 4.4. Event Records
change, but the view change should be short, since we have

The apply process uses the information in an event recordsmall messages.  The protocol requires  two round trips if
to perform the described operation.  Events are applied atthe coordinator is the designated primary, and otherwise it
both the primary and the backup, and in the presence  ofrequires only one and one half round trips.
failures, events can be applied more than once.  Neverthe-Thus we argue that there is fast failover in these cases
less, it must not be possible to  detect multiple applicationsbecause there is little  work to be done during the view
of event records when the file  system state is accessed viachange. In the case of a view change to mask a failure,
calls to Harp.failover time also includes the time needed for a node to

As an example of the kind of  problem that arises, con-notice that it has lost contact with its partner.  This time can
sider the following. Suppose user A attempts to write a filebe decreased by more frequent  monitoring of communica-
to which he or she has no write access.  Later, user B grantstion ability; we conjecture that the time required to notice
A write access to the file.  If we  log an event record for thethe need for the view change will be the dominant factor in
write and a later  one for the grant, there is no problem ifdetermining the speed of the failover in this case.  Whether
there is no crash:  when the write event  is applied, it willthe failover can be done before the user notices depends on
fail. However, if there is a crash things may not workhow quickly the client code times out a call; a failover must
properly. The problem is that the grant event may haveoccur within this interval or it will be visible to the user.
been applied and its effects recorded on disk before theThus we can see that our timeout interval  is related to that
crash. However, when the crashed node recovers (and goesof a higher layer  of the system.  NFS allows its users to
through a view change), the write event may still be in thecontrol this higher-level timeout; our plan is to set it to
log. Therefore, when the log is applied after the viewmask failovers, provided we can get them to be reasonably
change, the write would happen since it appears to  be per-fast (a few seconds).
mitted.There are a number  of (unlikely) failure situations that

We use a simple strategy to avoid situations like this:  wecan lead to loss of information (e.g., media failures at both
add an event to the log only when we know the "outcome",the designated primary and backup).  In this case the  view
and the entry in the log completely describes this outcome.change protocol will fail and human intervention will  be
For example, we do not add an entry for a write  operationrequired. The system administrator will need to determine
to the log until we know that the operation  can be per-how to set the system state.  Possible choices are:  the  disk
formed. (If the operation cannot be performed, we do  notstate of whichever of the designated primary or backup was
need to add any record to the log.)active most recently, the most recent file system dump, or,

if the entire log is kept on tape, it could be replayed.  These A second example concerns directory operations.  Sup-
choices all have their problems:  at the very least, effects of pose we start with an empty directory  D and perform the
recently committed operations will be lost.  If recovery is following operations:
done from the disk state of  a designated primary or backup

create B in directory Dand that node had crashed, its disk must be scavenged, and
create A in directory Dthe result may be missing the effects of some committed
remove A from directory Doperations even though it includes effects of operations that
create A in directory Dcommitted later; also some operations (e.g., a rename) may
remove B from directory Dbe only partially reflected.  (As mentioned earlier, we do

not normally scavenge the disk  after a crash but instead This sequence will leave the directory entry for A in the
replay the log to restore the disk to a  consistent state, as is second directory "slot."  In Unix, the  location of directory
done in log-based file systems [15, 18, 30].) entries is visible to users, since directory pages can be read.

Now suppose all five operations were applied to the fileIf there has been a partition, some users may be  unable to
system and their effects reached disk before a crash.  Fur-access their files even though they can access the  desig-
thermore assume that after the crashed  member recovers,nated primary or  backup; the server cannot respond to
the resulting restored log has just the last three  eventoperations because it cannot communicate with other group
records. If we treat event records naively, we might end upmembers. The system could be configured to allow such a
with A’s entry in the first directory slot  after recovery,disconnected server to carry out non-modification opera-
which would be incorrect. Again  we avoid the problem bytions (including file reads -- the "time last  accessed" would
pre-computing the outcome before writing the event recordnot be updated) although the information read in this way
to the log.might not reflect the  effects of recent modifications.  The

disconnected server should not carry out modification The pre-computation of an operation’s outcome requires
operations, however, since this may cause the file system access to the system state that affects that operation.  If  the
state to diverge. operation concerns a part of the system  that has not been

modified recently, we can obtain the needed information by
making calls on the Unix file system; otherwise we need to
consult the log.  Any entry with index higher than the AP is
a "recent" entry (since its effects are not yet reflected in the
Unix file system).



The system state that must be consulted is the inode for a group and switches to the new primary when  there is a
file operation and the inode and directory pages for a direc- view change.  This approach has the  problem that each
tory operation.  Our approach is to  maintain "shadow implementation of the NFS client code would have  to be
copies" of this information.  The shadows are stored  in changed.
event records; a particular event record stores the shadows When a view change happens invisibly, we need to en-
for the inodes and directory pages that will be modified by sure that redirected operations are executed properly.  A
the record’s operation and we have an efficient mechanism problem arises when execution of the operation depends on
for finding the most recent shadow for an  inode or a direc- server state, since such state must then survive the view
tory page. An  inode shadow contains information such as change. To solve this problem,  we need to access server
"time last modified", "time last accessed", and protection state. Then we can replicate this state  (by including more
information.  For example, for a file write, the inode information in event records) and use it after a view change
shadow in the event record will contain the "time last to initialize the server.
modified" for the write.  A directory page shadow is simply In NFS, this problem shows  up only for duplicate mes-
a copy of that directory page  as it will appear after execut- sages. The NFS client code assigns each  user operation a
ing the operation. Since  some operations affect several unique id (this is the Sun  RPC id  [36]). The  server keeps
different shadowed objects (e.g., directory operations), track of the ids for  recent non-idempotent operations (e.g.,
some event records contain several shadows. file creates) in a table.  Each id is stored with the  response

Although we tried to make no changes to  the low-level for the call; if a duplicate message arrives, NFS sends back
Unix file system operations, some were needed to  support the stored response.  We need to read any new information
pre-computing of outcomes.  For example,  we need the in this table for each  VFS operation call and store it in the
ability to choose the "time last modified" for a file  write event record for the operation.  At the beginning of a new
rather than having Unix choose it for us. view, the primary uses the  information to initialize the

3server state to contain the proper table.4.5. Higher Level Issues
We will not be able to suppress duplicates  if our failover

To insert Harp seamlessly into a system, we need  to con- takes longer than the timeout period used at the client, since
sider some additional issues.  A system implemented using in this case the user may retry the call, and it will  have a
Harp must appear to  users to be identical to a non- different unique id.  Having such duplicates does not com-
replicated system except that failures are much less fre- promise the correctness of the system, since in this case the
quent. To accomplish this goal, most view changes should user knows the system has failed and recovered, and  dupli-
be completely invisible to users.  Making view changes cates across recovery from a failure are possible in  an un-
invisible requires fast automatic switching of a client to replicated system.  However, we do not  want to increase
send calls to a new  primary after a view change.  In ad- the duplicate problem by having failovers be too slow.
dition, when calls are redirected invisibly, we need to en-
sure that they have exactly the same effect as they would in 5. Status and Performance
a single server system when the server doesn’t crash.

One possible mechanism for switching to a new primary This section describes the current state of the implemen-
is the following. Our  environment supports the IP mul- tation of Harp and gives  some initial performance data.  It
ticast mechanism [8], which allows a message to be sent to also describes our future plans.
several nodes, and furthermore does this efficiently (e.g., so

At present servers and clients are  MicroVax 3500’s; ser-that a node that is not  currently interested in a message
vers have RA70 disks.  The nodes run Unix 4.3BSD (withdoes not actually receive it).  If we use this mechanism,  we
University of Wisconsin and Sun  Microsystems modifica-would assign one multicast address to each replica group.
tions to support VFS and NFS); we have made  some smallBoth the designated primary and the designated backup of
changes to Unix.  The nodes are connected by  a tenthe group can  receive messages sent to that address, but
megabit ethernet; a kernel to kernel roundtrip for a smallusually only one does; messages at the other group member
(one packet) message takes around five milliseconds.are discarded by the hardware.  When there is a  view

The Harp implementation is being done in C. Only thechange, the new primary arranges to start receiving mes-
normal case code has been implemented so far; we aresages on that address.  This  mechanism does not require
working on view changes now.  The implementation  runsany changes to client code.  It works well  in our environ-
at kernel level and makes use of several processes.  Atment, but it has three problems:  it may not  scale (there
present we are using four processes  within a primary ormay not be enough multicast addresses available for use by
backup. One of these  is the apply process; others handleour system), it is not supported in some environments, and
communication and garbage collection of the log.it doesn’t support reconfiguration very well (e.g., a recon-

figuration in which a file system is moved from one replica To understand the performance of Harp in the absence of
group to another).

An alternative mechanism that does not have these 3This approach violates the abstraction barrier between our system andproblems is to insert some code inside the NFS client code.
the NFS server code.  A cleaner  approach, e.g., call backs, would be

This code caches the identity of the  current primary for a desirable.



failures, we ran a number of experiments that compare  the The benchmark generates the specified operation load and
performance of Harp with that of an unreplicated NFS serv- operation mix and then measures the average operation
er that uses Unix files directly. The  data from these experi- response time and the load experienced by the server.  We
ments are given below. All  Harp experiments were run in a looked at two mixes:  a read-only mix,  and the so-called
system containing two servers.  The unreplicated NFS  ex- software development mix [25]. These  mixes represent en-
periments were run on a single server identical to the one vironmental extremes, since the software development mix
used in the Harp experiments.  Experiments were run at a assumes 50% diskless workstations, and therefore contains
time when network traffic was light.  File reads were run a large fraction (15%) of writes.  (In  both mixes, file reads
using the early reply option, i.e., read events are logged but are (also) modification operations since they  modify the
the result is returned before the event is  sent to the backup. "time last accessed".) We  gradually increased the server
The bound on the log size was set at two megabytes; we operation processing rate until the server saturated, i.e., its
forced Unix to write its buffers when the log was 65% full, time to respond to operations got dramatically worse. This
and stopped forcing when the log was 55% full.  The max- gives us an indication of the operation processing capacity
imum size of the log observed in our experiments was of the server which in turn is indicative of the number  of
around one and a half megabytes. users the system can support.

Figure 5-1 shows the results of running  the Andrew Figure 5-2 show results obtained by running Nhfsstone;
benchmark [17]. The  Andrew benchmark is a widely used in this experiment Harp was running a single replica group.
synthetic benchmark. It  performs a fixed set of operations In the figure, the horizontal axis shows the average server
intended to be a representative sample of the  kind of ac- operation processing rate in operations per second and  the
tions an average user of the Andrew file system might  per- vertical axis shows the average response time  for opera-
form, and measures the total  elapsed time, which gives an tions at that processing rate and operation mix.  It is clear
indication of the file system response time.  The  figure from the figure that the performance of the two systems is
compares the performance of an unreplicated NFS server comparable on the read-only mix, but Harp outperforms the
on this benchmark with the performance of Harp.  Two unreplicated NFS on the software development mix be-
figures are given for Harp, one  for the case where there is cause of the large number of writes in that mix.  Harp’s
just one replica group, and the second for the case where response time is lower and, in addition,  it saturates at a
there are two groups.  In the two-group  case, each server higher load and therefore has a larger operation processing
acted as the primary for one group and the backup for the capacity than the unreplicated system.  Of course, when
other; a second  client was also running the benchmark configured like this Harp requires considerably more
using the second group. hardware than the unreplicated system.  Such a system

might nevertheless be of interest because it provides high
reliability and availability at moderate cost.  (The witness
in such a system  can be at a third node that is small and
cheap.)

Figure 5-1: The Andrew Benchmark

As can be seen, Harp runs  a little more slowly in the
two-group case than in the one-group case because of inter-
ference at a server between the primary from one group and
the backup from the other.  Harp performs  slightly better
than the unreplicated server; this is because  we replace a
disk write with a message roundtrip, which is faster in  our
environment. It is interesting  to note that even though
caching at the NFS client largely masks the actual  server
response time in this experiment,  we are still able to im-
prove upon the unreplicated system results.
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To get an indication  of server performance independent
of the effects of client caching, we ran the Nhfsstone Figure 5-2: Nhfsstone Benchmark with One Group.
benchmark [25, 34]. Nhfsstone is a standard synthetic SDM is the Software Development Mix.
benchmark designed to measure the performance of NFS

However, we expect many users  will want to get morefile servers.  It simulates a  multi-client NFS file server
processing out of the servers.  Our final  experiment ap-workload in terms of the mix of NFS operations and the
proximates this case.  In this experiment we run two simul-rate at which the  NFS clients make requests of the server.



taneous Nhfsstone benchmarks. For  Harp, each benchmark 6. Conclusion
used a different group; again, each server acted as  the
primary for one group and the backup for  the other group. This paper has described the design  and implementation
For the unreplicated system, each benchmark used a dif- of the Harp file system, a replicated Unix file system that is
ferent server.  The results of running these  Nhfsstone ex- intended to be used within a network file service.  Harp is
periments are shown in Figure 5-3.  The  two systems are one of the  first implementations of the primary copy
again comparable on the read-only mix.  On  the software replication technique that runs on conventional hardware.
development mix, Harp still outperforms the unreplicated The current implementation guarantees that all completed
NFS, although it does not perform as well as it did  in the user operations are performed atomically and survive single
single-group experiment.  The figure shows the perfor- failures and likely simultaneous failures.  Furthermore, user
mance measured by one of the Nhfsstone benchmarks (the files continue to be accessible when a single node fails, and
other one had the same results); since there are two failover is fast in common cases.
benchmarks running, the two-group system is actually han-

Harp’s replication algorithm incorporates several noveldling twice the number of operations shown.
ideas that allow it to  provide good performance.  Most

The Nhfsstone benchmark generates a constant load and notable is its use of a volatile write-ahead log backed up by
therefore does not model the bursty nature  of the actual UPS’s, which allows it  to trade disk accesses for message
load on a file service.  We have not  yet measured Harp passing. Note that we can  expect our performance to im-
under such a load,  but we expect that Harp’s log, which prove relative to an  unreplicated system because networks
acts as an asynchronous buffer between the client  and the and processors are getting faster more rapidly than disks.
server, will smooth out the bursts in the actual client load,

Although Harp is used by NFS  in our current implemen-as is the case in other systems  [24]. This  will give Harp a
tation, it is relatively independent of the particular file ser-further advantage over the unreplicated server.
vice that uses it.  It implements the VFS  interface; any
network file service that uses  this interface should be able
to use  Harp to provide better reliability and availability.
However, Harp is not  totally free of dependencies of the
service that uses it.  As mentioned  in Section 4.5, Harp
needs access to request ids so that it  can ensure duplicate
suppression across a failover that happens invisibly to sys-
tem users.  Also, the timeout used in  Harp to detect the
need for a view change is related to the timeout  for client
calls; our goal is to accomplish failovers within the client
cal l  t imeout  per iod (set t ing the cl ient  t imeout
appropriately).

As distributed systems become more and more prevalent,
there is a growing dependence on file servers.  However
existing file servers are unsatisfactory because they fail too
often. Harp corrects this problem.  A  file server can be
switched to use Harp without file system users noticing theLoad (calls/sec)
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difference, except in a positive way. Once  Harp is in place,
the file system will fail much less often than it did before,

Figure 5-3: Nhfsstone Benchmark with Two Groups. and even when it fails, it will usually do so more gracefully
SDM is the Software Development Mix. than an unreplicated system because operations are per-

formed atomically (in the absence of a catastrophe).  Fur-As we add the view change code to the system, it will  be thermore, Harp does all this while providing good perfor-interesting to see how fast we can do failovers,  and what mance. Our performance results so far indicate that we caneffect, if any, the added  code has on normal case perfor- perform as well or better than an unreplicated NFS servermance. The biggest problem will be maintaining warm that uses the Unix file system directly.  If these results holdwitnesses; we expect this to cause little degradation in per- up in the complete implementation, as we expect  them toformance because the primary can use a multicast to send do, it means that high availability and good semantics canits messages to both the witness and the backup, and  there be achieved with just a  relatively small amount of ad-will be no acknowledgments from the witness. ditional hardware (the UPS’s and the  extra disks to hold
Once the implementation is complete, we plan to under- extra file copies).

take a careful study of its performance, which depends on a
complex interaction of a number of parameters (e.g.,  disk
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