
CS 612:
Software Design for

High-performance Architectures

Keshav Pingali
Cornell University

Administration

• Instructor: Keshav Pingali
– 457 Rhodes Hall
– pingali@cs.cornell.edu

• TA: Kamen Yotov
– 492 Rhodes Hall
– kyotov@cs.cornell.edu

Course content

• Course objective:
– understand how to build intelligent software

systems
• Course work:

– 3 or 4 programming assignments
– paper presentation
– final project

What is intelligence?

• Intelligence: ability to adapt effectively to the
environment by
– changing oneself
– changing the environment
– finding a new environment

• Objective of adaptation:
– more efficient existence
– improved chances of survival

What does this have to do with software?

Computing environments are changing

• Current picture:
– Monolithic application runs on one platform

• Resources such as processors/memory are bound to application
before it starts

– Code optimized statically for those resources
• Survivability: machine crashes restart program

• Where we going: grid computing
– Application may run in a distributed fashion across the net

on several platforms during execution
• Resources are bound dynamically

– Code cannot be statically optimized for resources
• Programs run for longer than the hardware MTBF

– Cannot afford to restart application every time hardware fails

Grid Simulation Example

Mesh generation: William&Mary

– Problems require meshes with O(106)
elements

– Time: 2-3 hours on // mc.s

Linear system solvers: MSU
– Large sparse systems Ax =b where A

has O(107) elements
– Time: ~1 hour on // mc.s

Fracture specialist: Cornell

Sample solutions from test-bed

Advantages of grid-based
simulation

• Simplifies project management
– no need for everyone to agree on a common implementation

language or hardware platform
– need agree only on data exchange format (XML/SOAP)

• Avoids software maintenance problem
– each project site maintains its own code but makes it available to

other partners as a web service
• In future

– computations scheduled for execution wherever there are free
resources

– computations may even migrate during execution where more
resources become available

Implications for software

• Software needs to be adaptive
– adaptation for efficiency

• application must be optimized dynamically when
computation starts on or migrates to a new platform

– adaptation for survival
• adapt gracefully to processor and link failures:

self-healing software

Software must become more intelligent

Ongoing projects

• Immanuel: a system for self-optimization
– Adaptation for efficiency
– NSF-funded medium ITR project
– Partners: UIUC, IBM

• Adaptive Software Project (ASP)
– Adaptation for survival
– NSF-funded large ITR project
– Partners: Cornell CEE,MSU,OSU,CWM,NASA

Immanuel:
A System for Self-optimization

Key numerical kernels

• Matrix factorizations:
– Cholesky factorization: A = LLT (A is spd)
– LU factorization: A = LU
– LU factorization with pivoting: A = LU
– QR factorization: A = QR (Q is orthogonal)

• Basic Linear Algebra Subroutines (BLAS):
– BLAS-1: inner-product of vectors, saxpy
– BLAS-2: matrix-vector product, triangular solve
– BLAS-3: matrix multiplication

Performance bottleneck

“…The CPU chip industry has now reached the
point that instructions can be executed more
quickly than the chips can be fed with code and
data. Future chip design is memory design. Future
software design is also memory design. .…
Controlling memory access patterns will drive
hardware and software designs for the foreseeable
future.”

Richard Sites, DEC

Memory Hierarchy of SGI Octane

• R10 K processor:
– 4-way superscalar, 2 fpo/cycle, 195MHz

• Peak performance: 390 Mflops
• Experience: sustained performance is less than 10% of peak

– Processor often stalls waiting for memory system to load data

size

access time (cycles)
2 10 70

64

32KB (I)
32KB (D)

1MB

128MB

Regs

L1 cache
L2 cache

Memory

Memory-wall solutions

• Latency avoidance:
– multi-level memory hierarchies (caches)

• Latency tolerance:
– Pre-fetching
– multi-threading

• Techniques are not mutually exclusive:
– Most microprocessors have caches and pre-fetching
– Modest multi-threading is coming into vogue
– Our focus: memory hierarchies

Hiding latency in numerical codes
• Most numerical kernels: O(n3) work, O(n2) data

– all factorization codes
• Cholesky factorization: A = LLT (A is spd)
• LU factorization: A = LU
• LU factorization with pivoting: A = LU
• QR factorization: A = QR (Q is orthogonal)

– BLAS-3: matrix multiplication
use latency avoidance techniques

• Matrix-vector product: O(n2) work, O(n2) data
– use latency tolerance techniques such as pre-fetching
– particularly important for iterative solution of large sparse

systems

Software problem

• Caches are useful only if programs have
locality of reference
– temporal locality: program references to given memory

address are clustered together in time
– spatial locality: program references clustered in address

space are clustered in time
• Problem:

– Programs obtained by expressing most numerical
algorithms the straight-forward way do not have much
locality of reference

– Worrying about locality when coding algorithms
complicates the software process enormously.

Example: matrix multiplication

• Great algorithmic data reuse: each array element is touched
O(N) times!

• All six loop permutations are computationally equivalent
(even modulo round-off error).

• However, execution times of the six versions can be very
different if machine has a cache.

DO I = 1, N //assume arrays stored in row-major order
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

IJK version (large cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:
– Matrices are small enough to fit into cache
– Only cold misses, no capacity misses
– Miss ratio:

• Data size = 3 N2

• Each miss brings in b floating-point numbers
• Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)

C

B
A

K

K

IJK version (small cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Small cache scenario:
– Matrices are large compared to cache/row-major storage
– Cold and capacity misses
– Miss ratio:

• C: N2/b misses (good temporal locality)
• A: N3 /b misses (good spatial locality)
• B: N3 misses (poor temporal and spatial locality)
• Miss ratio 0.25 (b+1)/b = 0.3125 (for b = 4)

C

B
A

K

K

MMM Experiments
• Simulated L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements

Quantifying performance differences

DO I = 1, N //assume arrays stored in row-major order
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Octane
– L2 cache hit: 10 cycles, cache miss 70 cycles

• Time to execute IKJ version:
2N3 + 70*0.13*4N3 + 10*0.87*4N3 = 73.2 N3

• Time to execute JKI version:
2N3 + 70*0.5*4N3 + 10*0.5*4N3 = 162 N3

• Speed-up = 2.2
• Key transformation: loop permutation

Even better…..
• Break MMM into a bunch of smaller MMMs so that large cache model is true

for each small MMM
large cache model is valid for entire computation
miss ratio will be 0.75/bt for entire computation where t is

Block-recursive MMM
A11 A12

A A 2221

B11 B12

B 21

C11 C12
x =

C C 2221B22

C11 = A11 x B11 + A12 x B21
C12 = A11 x B12 + A12 x B22
C21 = A21 x B11 + A12 x B21
C22 = A21 x B12 + A22 x B22

Decompose MMM recursively till you
get mini-MMMs that fit into cache

Loop tiling

• Rearrangement of block MMM gives tiled version.
• Parameter t (tile size) must be chosen carefully

– as large as possible
– working set of small matrix multiplication must fit in cache

A

B

C

It

Kt

Jt

I

K

JDO It = 1,N, t
DO Jt = 1,N,t
DO Kt = 1,N,t
DO I = It,It+t-1
DO J = Jt,Jt+t-1
DO K = Kt,Kt+t-1
C(I,J) = C(I,J)+A(I,K)*B(K,J)

t
t

t
t

Computing tile size
• Determine matrix size at which capacity misses show up
• Form “ijk”

– i fixes row of A and C
– j fixes element of C and column of B
– k fixes element of A and element of B

• In other words:
– For each element of C and corresponding row of A
– Walk over the whole B

• After one walk of B, LRU is the first column of B (although we want the A row)
• We need space for one more row of A in order to preserve whole B in cache!
• Therefore: N^2 + 2 * N + 1 < C
• For Pentium III L1 cache, this gives N = 44 which agrees with graph

A B C
k j j

i k i

Speed-up from tiling

• Miss ratio for block computation
= miss ratio for large cache model
= 0.75/bt
= 0.001 (b = 4, t = 200) for Octane

• Time to execute tiled version =
2N3 + 70*0.001*4N3 + 10*0.999*4N3 = 42.3N3

• Speed-up over JKI version = 4

Observations

• Locality optimized code is more complex than
high-level algorithm.

• Loop orders and tile size must be chosen carefully
– cache size is key parameter
– associativity matters

• Actual code is even more complex: must optimize
for processor resources
– registers: register tiling
– pipeline: loop unrolling
– Optimized MMM code can be ~1000 lines of C code

Restructuring compilers (1985-)

• Compiler writer given detailed machine
model
– Number of registers.
– Cache organizations.
– Instruction set: mul-add? vector extensions? …

• Writes restructuring/optimizing compiler
– for the given machine model.

Cholesky (Ahmed,Mateev)

Structure of restructured code is similar to that of
LAPACK code
Performance gap in compiler-generated code arises
from sub-optimal choice of transformation parameters

0

50

100

150

200

250

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

Matrix Size

M
FL

O
PS

SGI Compiler Locality optimized LAPACKdo j = 1, n
do k = 1, j-1

do i = j+1, n
A(i,j) = A(i,j) +

A(i,k) * A(j,k)
enddo

enddo
A(j,j) = sqrt(A(j,j))
do i = j+1, n

A(i,j) = A(i,j) / A(j,j)
enddo

enddo

LU Performance (Menon)

0

50

100

150

200

250

300

350

400

450

500

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

size

M
Fl

op
s

LAPACK

Distributed w ith BLAS

Distributed

Original LU

300 MHz SGI Octane with 2MB L2 Cache

Jacobi finite-difference stencil

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800

Matrix Size
Ti

m
e

(s
ec

on
ds

)

SGI Compiler Locality Optimized

5x speedup over unoptimized code
Cannot use LAPACK for this problem

do t = 1, m
do i = 2, n-1

do j = 2, n-1
L(i,j) = (A(i,j+1) + A(i,j-1)

A(i-1,j) + A(i+1,j))/4
enddo

enddo
do i = 2, n-1

do j = 2, n-1
A(i,j) = L(i,j)

enddo
enddo

enddo

One focus of CS 612

• Transformations on programs must leave
their semantics unchanged

• Program analysis techniques:
– define space of programs equivalent to original

program
• Program transformation techniques:

– from this space, select best restructured
program

Lessons
• Restructuring compilers can generate code that is

competitive with best hand-optimized code.
• Performance gaps of 10-15% remain

– transformation parameters like tile sizes are hard to
compute optimally

– two problems:
• difficult to model hardware exactly
• difficult to model interactions between program and hardware

• Restructuring compilers: complex software
– unrealistic to expect that all platforms will have such

compilers
• Research problem:

How do we attack these deficiencies of the traditional
approach to program optimization?

Empirical optimization
• Estimate transformation parameters and optimal

versions by using exhaustive search
– ATLAS: generator for automatically tuned BLAS

kernels (Dongarra et al)
• Pros:

– Not hostage to whims of restructuring compiler
– Self-tuning: system can generate tuned code even for

machines that did not exist when it was written
• Cons:

– Search takes a long time: many hours just to generate
optimized MMM
Impractical for large programs

Our approach
• Restructure application program just once

– parameters like tile sizes are left unspecified
– generate multiple optimized versions if necessary
– generate C code

• Running on a new platform
– first run micro-benchmarks to get model of new

architecture
– use model + search to

• estimate good values of parameters
• select optimal version of code

– use simple back-end compiler like GCC to generate
machine code

• Complete performance prediction is too difficult
• One solution: hierarchy of models

– Use simple model to rank transformations
– Use more complex models to break ties

Reality: hierarchy of models

Immanuel system overview

Source program

Transformations

Selection

Hardware

Behavior
Space State

Space
Policy
Space

Static analysis

Analytical models

Execution
Monitoring

Micro-benchmarks

Ongoing work
• Micro-benchmarks

– Number of registers
– L1/L2/L3/Memory/TLB sizes, line sizes,…
– L1 instruction cache size, line size, associativity
– Multiply-add, MMX-style instructions?

• Analytical models
– will probably need a hierarchy of models
– use simple model to rank transformations

approximately, use complex models to break ties
• Restructuring compiler

– static analysis/transformations/…
• Intelligent search

Ongoing projects

• Adaptation for efficiency
– Immanuel: a system for self-optimization
– NSF-funded medium ITR project
– Partners: UIUC, IBM

• Adaptation for survival
– Adaptive Software Project (ASP)
– NSF-funded large ITR project
– Partners: Cornell CEE,MSU,OSU,CWM,NASA

Fault tolerance

• Fault tolerance comes in different
flavors
–Mission-critical systems: (eg) air

traffic control system
• No down-time, fail-over, redundancy

–Computational applications
• Restart after failure, minimizing expected

time to completion of program
• Guarantee progress

Fault tolerance strategies

Checkpointing Message-logging

uncoordinated

non-blocking blocking

pessimistic

optimistic

causal

coordinated

State saving

Application-level

System-level

Our experience/beliefs:

• Message-logging does not work well for
communication-intensive numerical applications
– Many messages, much data

• System-level checkpoint is not as efficient as
application-level
– IBM’s BlueGene protein folding

• Sufficient to save positions and velocities of bases

– Alegra experience at Sandia labs
• App. level restart file only 5% of core size

Our Goal

• Develop a preprocessor that will transparently add
application-level checkpointing to MPI applications
– As easy to use as system-level checkpointing
– As efficient as user-specified application-level checkpointing

MPI source code,
no FT consideration

MPI source code
with app. level FT FT MPI application

our preprocessor native compiler

Sequential application state

• An application’s state consists of
– Program counter
– Call stack
– Globals
– Heap objects

• Optimizations:
– Where should we checkpoint?
– Memory exclusion

• Live/Clean/Dead variable analysis
– Recomputation vs. restoring

• Protein folding example

Supporting MPI applications

• It is not sufficient to take a checkpoint of each
individual process

• We need to account for the following
– In-flight messages
– Inconsistent messages
– Non-blocking communication
– Collective communication
– “Hidden” MPI state
– At application level, message send/receive not

necessarily FIFO
• Process can use tags to receive messages out of order

In-flight and inconsistent messages

• m1 is in-flight
– After recovery, message is not resent but receiver wants

to receive it again
• m2 is inconsistent

– After recovery, message is resent but receiver does not
want to receive it again

P1

P2

m1
m2

recovery line

Previous work

• Many distributed snapshot algorithms invented by
distributed systems community
– (eg) Chandy-Lamport protocol

• These protocols are not suitable for MPI programs
– Developed for system-level check-pointing, not

application-level check-pointing
– Communication between processes is not FIFO
– Process communication topology is not fixed
– Do not handle collective communication

Beliefs

• Complexity of making program FT may
vary from program to program
– Not all programs will exhibit all the problems

described earlier
• FT protocol should be customized to

complexity of program
– Minimize the overhead of fault tolerance

Degrees of complexity

Parametric computing

Bulk Synchronous

Iterative Synchronous

MIMD(eg. Task parallelism)

Non-FIFO MIMD

Increasing
complexity
of protocol

Summary
• Intelligence: ability to adapt to the environment by

– changing oneself
– changing the environment
– finding a new environment

• Objective of adaptation:
– more efficient existence
– improved chances of survival

• Software has just started down this road.

Lecture schedule
• Application requirements:

– computational science applications
• Architectural concerns:

– memory hierarchies
– shared and distributed-memory machines

• Program analysis and optimization
– perfectly-nested loops
– imperfectly-nested loops
– empirical optimization

• Fault-tolerance
– system-level and application-level protocols
– optimizing state saving

