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Course content

• Course objective:
– understand how to build intelligent software 

systems
• Course work:

– 3 or 4 programming assignments
– paper presentation
– final project



What is intelligence?

• Intelligence: ability to adapt effectively to the 
environment by
– changing oneself
– changing the environment
– finding a new environment

• Objective of adaptation:
– more efficient existence
– improved chances of survival

What does this have to do with software?



Computing environments are changing

• Current picture:
– Monolithic application runs on one platform

• Resources such as processors/memory are bound to application 
before it starts

– Code optimized statically for those resources
• Survivability: machine crashes restart program

• Where we going: grid computing
– Application may run in a distributed fashion across the net 

on several platforms during execution
• Resources are bound dynamically

– Code cannot be statically optimized for resources
• Programs run for longer than the hardware MTBF 

– Cannot afford to restart application every time hardware fails



Grid Simulation Example 

Mesh generation: William&Mary

– Problems require meshes with O(106) 
elements

– Time: 2-3 hours on // mc.s

Linear system solvers: MSU
– Large sparse systems Ax =b where A 

has O(107) elements
– Time: ~1 hour on // mc.s

Fracture specialist: Cornell



Sample solutions from test-bed



Advantages of grid-based 
simulation

• Simplifies project management
– no need for everyone to agree on a common implementation 

language or hardware platform
– need agree only on data exchange format (XML/SOAP)

• Avoids software maintenance problem
– each project site maintains its own code but makes it available to 

other partners as a web service
• In future

– computations scheduled for execution wherever there are free 
resources

– computations may even migrate during execution where more 
resources become available



Implications for software

• Software needs to be adaptive
– adaptation for efficiency

• application must be optimized dynamically when 
computation starts on or migrates to a new platform

– adaptation for survival
• adapt gracefully to processor and link failures:     

self-healing software

Software must become more intelligent



Ongoing projects

• Immanuel: a system for self-optimization
– Adaptation for efficiency
– NSF-funded medium ITR project
– Partners: UIUC, IBM

• Adaptive Software Project (ASP) 
– Adaptation for survival
– NSF-funded large ITR project
– Partners: Cornell CEE,MSU,OSU,CWM,NASA



Immanuel: 
A System for Self-optimization



Key numerical kernels

• Matrix factorizations:
– Cholesky factorization:   A = LLT  (A is spd)
– LU factorization:   A = LU
– LU factorization with pivoting:   A = LU
– QR factorization:   A = QR (Q is orthogonal)

• Basic Linear Algebra Subroutines (BLAS):
– BLAS-1: inner-product of vectors, saxpy
– BLAS-2: matrix-vector product, triangular solve
– BLAS-3: matrix multiplication



Performance bottleneck

“…The CPU chip industry has now reached the 
point that instructions can be executed more 
quickly than the chips can be fed with code and 
data. Future chip design is memory design. Future 
software design is also memory design. .… 
Controlling memory access patterns will drive 
hardware and software designs for the foreseeable 
future.”

Richard Sites, DEC



Memory Hierarchy of SGI Octane

• R10 K processor: 
– 4-way superscalar, 2 fpo/cycle, 195MHz

• Peak performance: 390 Mflops
• Experience: sustained performance is less than 10% of peak

– Processor often stalls waiting for memory system to load data
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Memory-wall solutions

• Latency avoidance:
– multi-level memory hierarchies (caches)

• Latency tolerance:
– Pre-fetching
– multi-threading

• Techniques are not mutually exclusive:
– Most microprocessors have caches and pre-fetching
– Modest multi-threading is coming into vogue
– Our focus: memory hierarchies



Hiding latency in numerical codes
• Most numerical kernels: O(n3) work, O(n2) data 

– all factorization codes
• Cholesky factorization:   A = LLT  (A is spd)
• LU factorization:   A = LU
• LU factorization with pivoting:   A = LU
• QR factorization:   A = QR (Q is orthogonal)

– BLAS-3: matrix multiplication
use latency avoidance techniques

• Matrix-vector product: O(n2) work, O(n2) data
– use latency tolerance techniques such as pre-fetching
– particularly important for iterative solution of large sparse 

systems



Software problem

• Caches are useful only if programs have
locality of reference
– temporal locality: program references to given memory 

address are clustered together in time
– spatial locality: program references clustered in address 

space are clustered in time
• Problem:

– Programs obtained by expressing most numerical 
algorithms the straight-forward way do not have much 
locality of reference

– Worrying about locality when coding algorithms 
complicates the software process enormously.



Example: matrix multiplication

• Great algorithmic data reuse: each array element is touched 
O(N) times!

• All six loop permutations are computationally equivalent 
(even modulo round-off error).

• However, execution times of the six versions can be very 
different if machine has a cache.

DO I = 1, N    //assume arrays stored in row-major order
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)



IJK version (large cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Large cache scenario:
– Matrices are small enough to fit into cache
– Only cold misses, no capacity misses
– Miss ratio:   

• Data size = 3 N2 

• Each miss brings in b floating-point numbers
• Miss ratio = 3 N2 /b*4N3 = 0.75/bN = 0.019 (b = 4,N=10)
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IJK version (small cache)

DO I = 1, N
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Small cache scenario:
– Matrices are large compared to cache/row-major storage
– Cold and capacity misses 
– Miss ratio:   

• C:  N2/b misses (good temporal locality)
• A: N3 /b misses (good spatial locality)
• B:  N3 misses (poor temporal and spatial locality)
• Miss ratio 0.25 (b+1)/b = 0.3125 (for b = 4)
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MMM Experiments
• Simulated L1 Cache Miss Ratio for Intel Pentium III

– MMM with N = 1…1300
– 16KB 32B/Block 4-way 8-byte elements



Quantifying performance differences

DO I = 1, N    //assume arrays stored in row-major order
DO J = 1, N

DO K = 1, N
C(I,J) = C(I,J) + A(I,K)*B(K,J)

• Octane
– L2 cache hit: 10 cycles, cache miss 70 cycles

• Time to execute IKJ version:
2N3 +  70*0.13*4N3 + 10*0.87*4N3 = 73.2 N3

• Time to execute JKI version:
2N3 +  70*0.5*4N3 + 10*0.5*4N3 =  162 N3

• Speed-up = 2.2
• Key transformation: loop permutation



Even better…..
• Break MMM into a bunch of smaller MMMs so that large cache model is true 

for each small MMM
large cache model is valid for entire computation
miss ratio will be 0.75/bt for entire computation where t is 



Block-recursive MMM
A11 A12

A A 2221

B11 B12

B 21

C11 C12
x =

C C 2221B22

C11 = A11 x B11 + A12 x B21
C12 = A11 x B12 + A12 x B22
C21 = A21 x B11 + A12 x B21
C22 = A21 x B12 + A22 x B22

Decompose MMM recursively till you 
get mini-MMMs that fit into cache



Loop tiling

• Rearrangement of block MMM gives tiled version.
• Parameter t (tile size) must be chosen carefully

– as large as possible
– working set of small matrix multiplication must fit in cache
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Computing tile size
• Determine matrix size at which capacity misses show up
• Form “ijk”

– i fixes row of A and C
– j fixes element of C and column of B
– k fixes element of A and element of B

• In other words:
– For each element of C and corresponding row of A
– Walk over the whole B

• After one walk of B, LRU is the first column of B (although we want the A row)
• We need space for one more row of A in order to preserve whole B in cache!
• Therefore: N^2 + 2 * N + 1 < C
• For Pentium III L1 cache, this gives N = 44 which agrees with graph

A B C
k j j

i k i



Speed-up from tiling

• Miss ratio for block computation
= miss ratio for large cache model
= 0.75/bt
= 0.001 (b = 4, t = 200) for Octane

• Time to execute tiled version =
2N3 + 70*0.001*4N3 + 10*0.999*4N3 = 42.3N3

• Speed-up over JKI version = 4



Observations

• Locality optimized code is more complex than 
high-level algorithm.

• Loop orders and tile size must be chosen carefully
– cache size is key parameter
– associativity matters

• Actual code is even more complex: must optimize 
for processor resources
– registers: register tiling
– pipeline: loop unrolling
– Optimized MMM code can be ~1000 lines of C code



Restructuring compilers (1985-)

• Compiler writer given detailed machine 
model
– Number of registers.
– Cache organizations.
– Instruction set: mul-add? vector extensions? …

• Writes restructuring/optimizing compiler
– for the given machine model.



Cholesky (Ahmed,Mateev)

Structure of restructured code is similar to that of 
LAPACK code
Performance gap in compiler-generated code arises 
from sub-optimal choice of transformation parameters
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do k = 1, j-1

do i = j+1, n
A(i,j) = A(i,j) + 

A(i,k) * A(j,k)
enddo

enddo
A(j,j) = sqrt(A(j,j))
do i = j+1, n

A(i,j) = A(i,j) / A(j,j)
enddo

enddo



LU Performance (Menon)
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Jacobi finite-difference stencil
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SGI Compiler Locality Optimized

5x speedup over unoptimized code
Cannot use LAPACK for this problem

do t = 1, m
do i = 2, n-1

do j = 2, n-1
L(i,j) = (A(i,j+1) + A(i,j-1) 

A(i-1,j) + A(i+1,j))/4
enddo

enddo
do i = 2, n-1

do j = 2, n-1
A(i,j) = L(i,j)

enddo
enddo

enddo



One focus of CS 612

• Transformations on programs must leave 
their semantics unchanged

• Program analysis techniques:
– define space of programs equivalent to original 

program
• Program transformation techniques:

– from this space, select best restructured 
program



Lessons
• Restructuring compilers can generate code that is 

competitive with best hand-optimized code.
• Performance gaps of 10-15% remain

– transformation parameters like tile sizes are hard to 
compute optimally

– two problems:
• difficult to model hardware exactly
• difficult to model interactions between program and hardware

• Restructuring compilers: complex software
– unrealistic to expect that all platforms will have such 

compilers
• Research problem: 

How do we attack these deficiencies of the traditional 
approach to program optimization? 



Empirical optimization
• Estimate transformation parameters and optimal 

versions by using exhaustive search
– ATLAS: generator for automatically tuned BLAS 

kernels (Dongarra et al)
• Pros:

– Not hostage to whims of restructuring compiler
– Self-tuning:  system can generate tuned code even for 

machines that did not exist when it was written
• Cons:

– Search takes a long time: many hours just to generate 
optimized MMM
Impractical for large programs



Our approach
• Restructure application program just once

– parameters like tile sizes are left unspecified
– generate multiple optimized versions if necessary
– generate C code 

• Running on a new platform
– first run micro-benchmarks to get model of new 

architecture
– use model + search to 

• estimate good values of parameters
• select optimal version of code

– use simple back-end compiler like GCC to generate 
machine code



• Complete performance prediction is too difficult
• One solution: hierarchy of models

– Use simple model to rank transformations
– Use more complex models to break ties

Reality: hierarchy of models



Immanuel system overview
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Ongoing work
• Micro-benchmarks

– Number of registers
– L1/L2/L3/Memory/TLB sizes, line sizes,…
– L1 instruction cache size, line size, associativity
– Multiply-add, MMX-style instructions?

• Analytical models
– will probably need a hierarchy of models 
– use simple model to rank transformations 

approximately, use complex models to break ties 
• Restructuring compiler

– static analysis/transformations/…
• Intelligent search



Ongoing projects

• Adaptation for efficiency
– Immanuel: a system for self-optimization
– NSF-funded medium ITR project
– Partners: UIUC, IBM

• Adaptation for survival
– Adaptive Software Project (ASP) 
– NSF-funded large ITR project
– Partners: Cornell CEE,MSU,OSU,CWM,NASA



Fault tolerance

• Fault tolerance comes in different 
flavors
–Mission-critical systems: (eg) air 

traffic control system
• No down-time, fail-over, redundancy

–Computational applications
• Restart after failure, minimizing expected 

time to completion of program
• Guarantee progress



Fault tolerance strategies 

Checkpointing Message-logging

uncoordinated

non-blocking blocking

pessimistic

optimistic

causal

coordinated

State saving

Application-level

System-level



Our experience/beliefs:

• Message-logging does not work well for 
communication-intensive numerical applications
– Many messages, much data

• System-level checkpoint is not as efficient as 
application-level
– IBM’s BlueGene protein folding

• Sufficient to save positions and velocities of bases

– Alegra experience at Sandia labs
• App. level restart file only 5% of core size



Our Goal

• Develop a preprocessor that will transparently add 
application-level checkpointing to MPI applications
– As easy to use as system-level checkpointing
– As efficient as user-specified application-level checkpointing

MPI source code,
no FT consideration

MPI source code
with app. level FT FT MPI application 

our preprocessor native compiler



Sequential application state

• An application’s state consists of
– Program counter
– Call stack
– Globals
– Heap objects

• Optimizations:
– Where should we checkpoint?
– Memory exclusion

• Live/Clean/Dead variable analysis
– Recomputation vs. restoring

• Protein folding example



Supporting MPI applications

• It is not sufficient to take a checkpoint of each 
individual process

• We need to account for the following
– In-flight messages
– Inconsistent messages
– Non-blocking communication
– Collective communication
– “Hidden” MPI state
– At application level, message send/receive not 

necessarily FIFO
• Process can use tags to receive messages out of order



In-flight and inconsistent messages

• m1 is in-flight 
– After recovery, message is not resent but receiver wants 

to receive it again
• m2 is inconsistent

– After recovery, message is resent but receiver does not 
want to receive it again

P1

P2

m1
m2

recovery line



Previous work

• Many distributed snapshot algorithms invented by 
distributed systems community
– (eg) Chandy-Lamport protocol

• These protocols are not suitable for MPI programs
– Developed for system-level check-pointing, not 

application-level check-pointing
– Communication between processes is not FIFO
– Process communication topology is not fixed
– Do not handle collective communication



Beliefs

• Complexity of making program FT may 
vary from program to program
– Not all programs will exhibit all the problems 

described earlier
• FT protocol should be customized to 

complexity of program
– Minimize the overhead of fault tolerance



Degrees of complexity

Parametric computing

Bulk Synchronous

Iterative Synchronous

MIMD(eg. Task parallelism)

Non-FIFO MIMD

Increasing
complexity 
of protocol



Summary
• Intelligence: ability to adapt to the environment by

– changing oneself
– changing the environment
– finding a new environment

• Objective of adaptation:
– more efficient existence
– improved chances of survival

• Software has just started down this road.



Lecture schedule
• Application requirements:

– computational science applications
• Architectural concerns:

– memory hierarchies
– shared and distributed-memory machines

• Program analysis and optimization
– perfectly-nested loops
– imperfectly-nested loops
– empirical optimization

• Fault-tolerance
– system-level and application-level protocols
– optimizing state saving


