
3
the Cornell Checkpoint (pre-)Compiler

Daniel Marques
Department of Computer Science

Cornell University

CS 612
April 10, 2003

Outline

Introduction and background
Checkpointing process state

Checkpointing a process’ position
Checkpointing local and global variables
Checkpointing heap objects

Optimizing checkpoint overhead

Project background
In the past, the High Performance Computing
(HPC) community didn’t give much though to
fault-tolerance (FT)

Expensive, specially designed “monolithic”
machines

Today, the migration to distributed,
interconnected machines (made from off-the-
shelf components) requires a re-examination
of FT needs and strategies

Increasing complexity
Machines are increasing in complexity

Newest ASCI machine @ 30,000 processors
IBM’s BlueGene-L has 65k nodes, each with two processing
cores

Increase in the possible points of failure increase in
failure rate

Once per hour, or even more frequently
Measured as the Mean Time Between Failure (MTBF)

Existing solutions don’t apply
FT has been extensively studied since the first crash
of a machine
Typically, FT solutions have involved system-level
checkpointing (SLC)

OS or library linked with application intermittently writes the
whole state of application to stable storage (core-dump
style)

Works OK for uniprocessors, but with thousands of
processes, each using GBs of address space, the
overhead of saving all this data to stable (network)
storage is way too high

Application-level checkpointing
Typically, for these massive applications, what works is
application-level checkpointing (ALC)

The programmer augments the source to his application such that
it can save and restart from its state
Only need to save the minimum amount of state required to
resume

i.e. for an engineering simulation, just save the physics of the problem,
not the computational structures

Requires extra effort for the programmer, which can not be
amortized over many applications
For some programming models (e.g. without barriers) it can be
impossible to determine a point where the processes will by
“synched” correctly to save just the physics

Proposal
Our solution is to use compiler technology to
generate ALC automatically for massively parallel
computations

As easy to use as SLC
As efficient as hand-written ALC

Two separate components
Mechanism to save state of an individual process
Mechanism to save state of communication channels

Our first goal is for providing FT for C applications
that use the MPI communication library

C3 : the Cornell Checkpoint (pre-)Compiler

Today’s talk with focus on the Cornell Checkpoint
(pre-)Compiler (C3)

C3 is a source-to-source compiler that transparently
adds ALC to the source code of a C application

Actually, it consists of two parts, the front end, and
the back end, which is a set of runtime libraries that
you link the modified application against

The front end inserts the appropriate calls to this library in
the application’s source

C3 usage
C3 front end will insert code to save / restore a processes state,
only at specific points marked in the code

ccc_potential_checkpoint locations
Another analysis could be used to determine good locations

This modified source will then be passed to the native compiler,
which will generate code for a FT application and link it with the
C3 back end libraries

C3

front end
native

compiler

Source code,
with no FT

Source code,
with ALC FT application

C3

back end

Outline

Introduction and background
Checkpointing process state

Checkpointing a process’ position
Checkpointing local and global variables
Checkpointing heap objects

Optimizing checkpoint overhead

Process state
The state of a process consists of a set of
different elements

Its program text
Its position in the program text (PC)
Its current activation record (stack frames)
Its global, local, and heap allocated variables

All of these need to be saved, and restored
correctly for a FT solution to be correct

Process position (1)

On restart, a process needs to resume
at the statement immediately following
the ccc_potential_checkpoint statement
where the checkpoint was taken
The front end will insert a unique label
for every such statement in the
program

Expands statement first, see example

Example (1)
bar()
{

int x;
//...
ccc_potential_checkpoint();

//...

ccc_potential_checkpoint();
//...

}

bar()
{

int x;
//...
if(checkpoint_time)
{

take_checkpoint();
label_1:

}
//...
if(checkpoint_time)
{

take_checkpoint();
label_2:

}
//...

}

Process position (2)
We need to ensure that we restart at the correct checkpoint
location

The precompiler inserts code to manipulate a data structure,
called the Position Stack (PS), such that top of the stack always
contains the value of the label of the checkpoint we are about
to take

Why a stack to store only one value? You will see

Example (2)
bar()
{

int x;
//...
ccc_potential_checkpoint();

//...

ccc_potential_checkpoint();
//...

}

bar()
{

int x;
if(checkpoint_time)
{

PS.push(1);
take_checkpoint();

label_1:
PS.pop();

}
//...
if(checkpoint_time)
{

PS.push(2);
take_checkpoint();

label_2:
PS.pop();

}
//...

}

Process position (3)
When the checkpoint is taken, the PS is saved as part
of the checkpoint

On restart, we restore the PS, and then use the
value(s) stored on it to go to the first statement after
the checkpoint was taken

We do this by having the precompiler insert a jump-
table at the entry to the function (after the variable
declaration)

Example (3)
bar()
{

int x;
//...
ccc_potential_checkpoint();

//...

ccc_potential_checkpoint();
//...

}

bar()
{

int x;
//...

if(RESTARTING)
{

int x = PS.top();
switch(x)
{
case 1: goto label_1;
case 2: goto label_2;
}

}
//...

}

Process position (4)

It is not enough to just know the
checkpoint location we are restoring to,
we also need to know the function call
chain that got us there
The front end will also insert labels
before each function call, and the
appropriate manipulations of the PS

Example (4)
foo()
{

int y;
//...
bar();

//...
bar();

//...
}

foo()
{

int y;
//...
if(RESTARTING)

switch(PS.top()) {…}
//...
PS.push(1);

label_1:
bar();
PS.pop();
//...

PS.push(2);
label_2:

bar();
PS.pop();
//...

}

Process position (5)
In this manner, when we restore from a checkpoint,
the PS contains a record of all the function calls that
were made, until we arrived at the take_checkpoint
site
When we restart, execution begins in main(), the
RESTARTING flag is set, and each function jumps to
the same call it made leading up to the checkpoint
Finally, we arrive at the deepest function, where we
jump to the statement after the checkpoint, the flag
is unset, and execution proceeds normally

Caveat: Decomposing complex expressions

As we saw, each function call must
have its own unique label

Otherwise, how do we know which
function to resume to

Expressions that contain multiple
functions calls must be decomposed
into a sequence of smaller expressions

z = callA(x++)* callB(callC()++);

becomes

temp1 = callA(x++);
temp2 = callC()++;
temp3 = callB(temp2);
z = temp1 * temp3;

So that we may insert the appropriate code before and after
each of the function calls

Outline

Introduction and background
Checkpointing process state

Checkpointing a process’ position
Checkpointing local and global variables
Checkpointing heap objects

Optimizing checkpoint overhead

Local variables (1)

On restart, our program will resume
immediately after the most recent
checkpoint

The activation stack will have the same
frames, in the same relative position

The stack frames have ‘garbage’ values
for the stack variables

Local variables (2)
Force stack variables to have the same virtual
address for every run of the same executable
(set stack-base appropriately)
Use another data structure, the Variable
Descriptor Stack (VDS), to save and restore
variable values
Front end inserts code such that:

When a variable enters scope, push its address
and length onto VDS
When it leaves scope, pop it from the VDS

Example (5)
function(int a)
{

VDS.push(&a, sizeof(a));
int b[10];
VDS.push(&b, sizeof(b));
{

int c;
VDS.push(&c, sizeof(c));
//...
VDS.pop;

}
VDS.pop;
VDS.pop;

}

Local variables (3)
When we take a checkpoint we use the VDS
to copy the variables’ values from the stack,
into the checkpoint file
We also save the VDS as part of the
checkpoint
On restart, we first restore the stack, then
restore the VDS, and then use it to copy
values from the checkpoint file into the
variables’ locations

Example (6)
Save_variables()
{

int j;
int x = VDS.length();
for(j = 0; j < x; j++)
{

item = VDS.item(j);
ad = item.address;
size = item.size;
fwrite(ckpt_file,

ad, size);
}
Save(VDS);

}

Restore_variables()
{

int j;
int x;
Restore(VDS);
x = VDS.length();
for(j = 0; j < x; j++)
{

item = VDS.item(j);
ad = item.address;
size = item.size;
fread(ckpt_file,

ad, size);
}

}

Return statement

When we encounter a return statement,
we must pop all variables currently in
scope

Those declared in all enclosing scopes, up
to the function declaration

Caveat: nested scopes

With nested scopes, we actually would
need to maintain more than one entry
on the PS for each function

So that we could jump to variable
declarations in nested scopes

We avoid this by moving all variables to
the function level

Doing appropriate renaming

Global variables
Currently, we treat global variables as local
variables to a pre-main() function that is
called before main
Accomplished by having the front end rename
main() to usr_main(), and insert code for a
new main() function that manipulates the
VDS for the globals, and calls usr_main()
Doesn’t work for multiple files where the
global are not all extern-ed

Outline

Introduction and background
Checkpointing process state

Checkpointing a process’ position
Checkpointing local and global variables
Checkpointing heap objects

Optimizing checkpoint overhead

Pointers
Notice that we saved stack variables
regardless of what they held
This means, that if a variable held a valid
pointer, on restart it will be restored with that
same value
So the same object must be restored to the
same address
For pointers to the stack, this is accomplished
by always building the stack in the same
manner from the same starting address

Heap objects (1)
For objects on the heap, this is not so easy
(malloc provides us with no way to specify an
address)
We also need to ensure that the heap’s
control data (the free list, etc.) are restored
correctly, so that future calls to malloc, free,
etc. work as expected
We need to build and maintain our own heap!

Heap objects (2)
Use operating system calls to request a
block of memory at a specific address

For Windows NT – VirtualAlloc
Build a heap in that area
We could just use a large global array,
but might be less efficient

Maybe for porting to other OS where no
analogue is available

Heap objects (3)

Back end provides our version of the
memory management routines
Front end converts calls to malloc, etc.,
to our versions (ccc_malloc) in the
application source

Heap objects (4)
In addition to a free-list, we also maintain a used-list
Useful for checkpointing, so that we only save heap
objects that are not free

Trade off between saving less data and the overhead of list
traversal / cache misses
Might adjust dynamically at runtime, dependent on heap
“fullness”

At checkpoint time, either save entire heap, or only
the non-free items. Also save free-list and used-list
On restart, request same area of memory, restore
the free-list and used-list, and then copy items from
checkpoint onto heap, to their original address

Revisiting pointers

Because both stack variable and heap
objects are restored to the same
addresses as they originally had, we
need to make no special consideration
regarding any pointers
We save them as ordinary data

Another approach
The PORCH system (Ramkumar,
Strumpen (Iowa / MIT)) is another
approach to compiler inserted
checkpointing

Goal was portability, i.e. re-locatable
pointers
Requires using a subset of language
And meta-structures to describe “links” in
data structures

Outline

Introduction and background
Checkpointing process state

Checkpointing a process’ position
Checkpointing local and global variables
Checkpointing heap objects

Optimizing checkpoint overhead

Memory exclusion (1)
As described so far, a checkpoint contains all of a
program’s data, but there are situations where we do
not need to save it all

Dead data – memory holding a value that will not be read
again
Static data – memory that hasn’t changed since the previous
checkpoint
Recomputable data – memory that holds a value that can be
recomputed after restoration
Redundant data – memory that holds a value that is also
stored someplace else

Memory Exclusion (2)
Dead memory
{

a = 7;

//…
checkpoint();
// if there are no

// reads to a in this
// region, we don’t
// need to save it

// above
a = 9;

}

Static memory
{

a = 7;

//…
checkpoint();
// if there are no

// writes to a in
// this region, we
// don’t need to save

// it below
checkpoint();

}

Memory exclusion (3)
Fairly easy compiler analysis to determine when a
stack variable is dead or static
Does not work for heap objects

Objects are anonymous
Objects might have multiple aliases

Compiler analysis becomes very difficult
Must be sound / conservative

We must use dynamic systems to do exclusion
But use compiler to “guide” them

Dead object elimination
Use a (conservative) garbage collector to
eliminate garbage before a checkpoint

Free garbage

Use compiler analysis to determine if a stack
allocated pointer is dead
Pass that information to the GC

i.e. the GC will ignore the fact that x points to
some object when determining if it is garbage

Static object elimination
Incremental checkpointing – use page
protection mechanism to only checkpoint
pages that have changed since the last
checkpoint
Suffers from the false-write problem

All data on a page will get checkpointed, if
anything on the page has changed

Use compiler to determine which objects
should be allocated next to one another

Recomputable object elimination

The value of a certain object (result objects) may be
a function of the values of other objects (operand
objects)
Rather than save all the objects, just save the
operand objects
On restart, recompute the result object
API can specify what could be recomputed, and how
to do it
Use a compiler to discover this automatically

Example (7)
while()
{

// B and C are vectors

A = B × C; //cross product
ignore(A);
checkpoint;

Label_1:
if(restart)

A = B × C;
}

Redundant object elimination
An MPI application consists of independent
processes, each with its own address space
A particular value might be stored on multiple nodes

In fact, MPI has many functions to cause such behavior,
MPI_Broadcast, etc.

Only save data on one node, on restart, send it to all
others
Again, API to specify such objects
Use compiler analysis to automate this

Checkpoint location
The location of checkpoints can have a drastic effect
on performance

If we test to see if we need to take a checkpoint too
frequently, additional overhead
Might be able to eliminate more memory at different
locations

Currently, programmer must specify checkpoint
locations in the code

By a call to ccc_potential_checkpoint()

Use compiler to determine optimal locations

