
Overview of Research in the Bernoulli Group

Keshav Pingali, Paul Stodghill
Grigor Bronevetsky, Jim Ezick, 

Rohit Fernandes, Daniel Marques, 
Kamen Yotov

Department of Computer Science
Cornell University



Outline

• Fault-tolerance
– Compiler Transformations for Fault-tolerance
– MPI/FT
– Other work

• Databases
• Adaptive Compilers
• Collaborations



System-level adaptivity

• Increasingly important for 
high-performance computing
– Simulation as the third mode of 

discovery
– → explosion of scientific 

computing
• Adaptive computing

– Changing resource demands

• Fault-tolerance
– Better networking 
– → Collaboration, Resource 

Sharing 
– → Distributed computing



State of the art

• Research in distributed systems
– General purpose, transparent reliability for user applications
– Implemented at the (operating) system level
– ∴ few assumptions about the applications

• Research in restructuring compilers
– Program analysis and transformations
– Irregular and parallel applications



Our approach

• Goal:
– Transparent reliability 

with lower overhead
• Lower overhead by

– exploit structures of applications 
• Transparent, automatic by

– using program transformations (ie, compiler aided)
• Compiler + Run-time system = a feasible solution



Current work

• Exploiting determinism
– Most scientific codes are deterministic (or might as well be)
– Runtime: Deterministic and Non-deterministic message logging protocols
– Compiler: insert code to switch between

• Exploiting inherent synchronization
– Many scientific codes have global synchronization
– Runtime: Uncoordinated, Block and non-blocking coordinated 

checkpointing
– Compiler: find and leverage global synchronization

• Preliminary experiments: workable and practical



Classification of recovery protocols for distributed 
memory computations

Recovery Protocols

Check-pointing Message-logging

Uncoordinated Coordinated

Blocking Non-blocking

each process saves its state
independently of others

hardware/software
barrier

distributed snap-shot

log messages and replay

processes co-operatively
save distributed state

save state on stable storage



Program transformations for application-level 
checkpointing

• Dan Marques
• Program transformations for

– C + user annotations
– Globals, Locals, stack

• Future work
– Heap objects
– robustness

int fib(int a)
{

int b; int c[5];

if (a <= 1)
return 1;

else{
int temp1;
int temp2;
temp1 = fib(a - 1);
b = temp1;
/* TAKE-CKPT-HERE */
temp2 = fib(a - 2);
b = b + temp2;

}
return b;

}



Program transformations for application-level 
checkpointing (cont.)

int fib(int a)
{

int b; int c[5];

if (_CKPT_MODE) {
// Restore locals from disk
switch(_CKPT_TMP_LABEL) {
case 1: goto LABEL_1; 
case 2: goto LABEL_2; 
case 3: goto LABEL_3; 
}

}

if (a <= 1)
return 1;

else{
int temp1; int temp2;
// Push locals to stack'

LABEL_1: 
temp1 = fib(a - 1);
// Pop locals from stack'
b = temp1;
// Push locals to stack'
// Checkpoint: write stack' to disk.

LABEL_2: 
if(_CKPT_MODE){

_CKPT_MODE = 0;
fclose(_CKPT_FILE);

}
// Pop locals from stack'
// Push locals to stack'

LABEL_3: 
temp2 = fib(a - 2);
// Pop locals from stack'
b = b + temp2;

}
return b;

}



Program Analysis for application-level 
checkpointing

• Jim Ezick and Dan
• If i0..i99 are unchanged at L102, 

then L0..L99 can be used to 
reinitialize

• Save minimal data to checkpoint 
(ie, k)

• Construct recovery script to 
reinitialize remaining data

• “compiler-theoretic” view of the 
problem (dominator trees)

• Tradeoff b/w size of checkpoint and 
recovery cost.

L0: i0 = 0;
.
.
.

L99: i99 = 0;
L100: k = 0;
L101: while (k < 1000)
L102: // check point here
L103: print f(k,i0,...,i99)
L104: k = k+1



Improved Algorithms for Finding Best Recovery 
Lines

• Kamen Yotov
• Uncoordinated 

Checkpointing and 
(Optimistic) Message 
Logging

• Simplified the classic 
algorithm
(4 colors to 2)

• Because it’s based on DFS, 
it’s easier to understand and 
implement.

11

21

31

41

12

22

32

42

13

23

33

43

14

24

34

44 45

15

25



MPI/FT

• Sequential checkpointing is working
• MPI “hooks” are implemented
• Engineering difficulty in getting the two to work together.



MPI/FT (cont.)

• Sequential checkpointing architecture
• Challenge – isolate client state from system state

Master

Client

Checkpointing

Master

Client

Restore

“Checkpoint me”

ReadProcessMemory

“Resume”

WriteProcessMemory



MPI/FT (cont.)

• What should the MPI architecture be?

Master

Client
MPI

Master

Client

MPI

MPI_stub

• “Tangled” MPI state • Poor performance?



Programming with Web Services

• Not implementing the web services themselves
(component program)

• Rather, programming with web services as external 
components (control program)

• Assumptions,
– A request to a web service can take a very long time to 

complete.
– Failures are possible (likely) during the execution of the 

control program



Dataflow Machine Model

• c.f. Von Neuman
• Machine is collection of 

computational nodes and 
dataflow edges

• Values flow along edges as 
tokens

• Nodes “fire” when tokens 
available on all in edges



Historical dataflow machines

• Properties
– Inherently parallel
– Latency tolerance

• In the literature
– Thread models (e.g., fibers)
– Dependence Flow Graphs 

(DFG’s)

• Inspired architectures
– Monsoon
– Tera, Earth/Manna

• Inspired programming 
languages
– Id, Id Noveau
– SSISL



Dataflow – the dark side

• Dataflow machines are slow
– Custom chips
– Designed for throughput, not peak

• Dataflow languages are hard
– Scheduling for conventional machines is hard
– Programmers are used to thinking about state
– Legacy code without a killer app



Perfect for Web Services

• Control program for web services
– Latency and fault tolerance is key
– Efficient scheduling isn’t (b/c latencies are unpredictable)
– Control programs are small and are novel



Architecture for Programming Web Services

Single Assignment λ-calculus
(Scheme or ML with write-once object)

SAλ Compiler

Dataflow Graph

Dataflow VM

Service

Service

Service

(SOAP or
.NET)



Adaptive Compilation

• Empirical Optimization – use experiments to guide 
parameter selection

• ATLAS – MMM optimized for one cache level
– Parameters – unrolling, block-size, etc.
– Experiments run for hours or days

• Memory Hierarchies are very deep (more than 3-levels)
– Brute-force approach is not practical



Adaptive Compilation (cont.)

• Our approach
– Use performance models to find neighborhood
– Use experimentation to find optimal parameter values

• Benefits
– Much faster than ATLAS-style
– Therefore can tackle multiple levels of memory hierarchy.

• How to develop models
– By hand
– By machine learning



Simulated Cache Misses for MMM



Discovering cache parameters

• Models are based upon certain cache parameters
– Cache-size
– Line-size
– Associativity
– Miss penalty

• Remember HW#1?
– Looking at machine learning and heuristic methods.



History

• 80% of the code of a typical business application deals 
with data manipulation (access, selection, I/O, 
transformations)

• Only 20% problem-oriented code
• Late 60s: How to reduce the not problem-oriented part?



Problems w/ Files

• File = dumb sequence of bytes (stream-oriented)
• Change in file format incurs costly source code changes 

(each function has to “know” the data layout)
• No guarantees for:

– Data integrity
– Referential Integrity

• No data manipulation language (DML)



Problems w/ Files (cont.)

• Poor interoperability
• No default support for:

– Fault tolerance
– Transactions

Problems solved in current generation RDBMS!



Solid Models

• Large unstructured data sets (and relations=structure) 
involved: Topology, Geometry, Mesh(es), Material 
properties

• Distinct (e.g. pre- and post-processing) phases with 
different access patterns

• Cannot be effectively handled without a querying 
language!



Coupled Thermo-Mechanical Simulation

• Heat conduction
– Heat fluxes on the central hole from MSU

– Fixed temperature (500K) for the cooling holes

• Solve for Temperature, spawn off wavelet analysis

• Coupling
– Thermal stresses
– Temperature dependent Young’s modulus and Poisson ratio

• Deformation
– Pressures and shear stresses on the inner hole from MSU
– Fixed displacement on one end surface

• Solve for displacement



Query Example
SELECT A.m_tet_id

FROM
(SELECT m_tet_id

FROM MVerticesOfMTetrahedron
WHERE m_vertex_id IN

(SELECT m_vertex_id
FROM MVerticesOfMTrianglesOnTSurface
WHERE m_triangle_id IN

(SELECT m_triangle_id
FROM MSU_wall_conditions)

)
GROUP BY m_tet_id
HAVING COUNT(m_vertex_id) = '3‘

) AS A
JOIN

TPartitioning AS B ON A.m_tet_id = B.m_tet_id
WHERE B.partition = ‘my_MPI_rank';



Adaptivity

• Modeling
– Coupling

• Algorithmic
– Identify hotspots and stress concentrations
– Explore different discretization techniques

• “FEM backend”
– H- and P-adaptivity
– Different solvers and preconditioners

• Database
– Query granularity



Advantages

• Database preserves a global view in a distributed 
simulation

• Reduced code size (SQL statements = strings, ODBC 
calls)

• The power of SELECT
• Interoperability (ODBC, OLE DB, ADO, HTTP, XML, …)
• Higher concurrency



Collaborations

• Cornell
– Paul Chew, Steve Vavasis, Bart Selman, Carla Gomes
– Cornell Fracture Group, Civil Engineering
– Cornell Theory Center

• Engineering Research Center, Mississippi State 
University

• College of William and Mary
• Dept of Comp Sci, UIUC
• IBM TJW


