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System-level adaptivity

• Increasingly important for 
high-performance computing
– Simulation as the third mode of 

discovery
– → explosion of scientific 

computing
• Adaptive computing

– Changing resource demands

• Fault-tolerance
– Better networking 
– → Collaboration, Resource 

Sharing 
– → Distributed computing



State of the art

• Research in distributed systems
– General purpose, transparent reliability for user applications
– Implemented at the (operating) system level
– ∴ few assumptions about the applications

• Research in restructuring compilers
– Program analysis and transformations
– Irregular and parallel applications



Our approach

• Goal:
– Transparent reliability 

with lower overhead
• Lower overhead by

– exploit structures of applications 
• Transparent, automatic by

– using program transformations (ie, compiler aided)
• Compiler + Run-time system = a feasible solution



Current work

• Exploiting determinism
– Most scientific codes are deterministic (or might as well be)
– Runtime: Deterministic and Non-deterministic message logging protocols
– Compiler: insert code to switch between

• Exploiting inherent synchronization
– Many scientific codes have global synchronization
– Runtime: Uncoordinated, Block and non-blocking coordinated 

checkpointing
– Compiler: find and leverage global synchronization

• Preliminary experiments: workable and practical



Classification of recovery protocols for distributed 
memory computations

Recovery Protocols

Check-pointing Message-logging

Uncoordinated Coordinated

Blocking Non-blocking

each process saves its state
independently of others

hardware/software
barrier

distributed snap-shot

log messages and replay

processes co-operatively
save distributed state

save state on stable storage



Program transformations for application-level 
checkpointing

• Dan Marques
• Program transformations for

– C + user annotations
– Globals, Locals, stack

• Future work
– Heap objects
– robustness

int fib(int a)
{

int b; int c[5];

if (a <= 1)
return 1;

else{
int temp1;
int temp2;
temp1 = fib(a - 1);
b = temp1;
/* TAKE-CKPT-HERE */
temp2 = fib(a - 2);
b = b + temp2;

}
return b;

}



Program transformations for application-level 
checkpointing (cont.)

int fib(int a)
{

int b; int c[5];

if (_CKPT_MODE) {
// Restore locals from disk
switch(_CKPT_TMP_LABEL) {
case 1: goto LABEL_1; 
case 2: goto LABEL_2; 
case 3: goto LABEL_3; 
}

}

if (a <= 1)
return 1;

else{
int temp1; int temp2;
// Push locals to stack'

LABEL_1: 
temp1 = fib(a - 1);
// Pop locals from stack'
b = temp1;
// Push locals to stack'
// Checkpoint: write stack' to disk.

LABEL_2: 
if(_CKPT_MODE){

_CKPT_MODE = 0;
fclose(_CKPT_FILE);

}
// Pop locals from stack'
// Push locals to stack'

LABEL_3: 
temp2 = fib(a - 2);
// Pop locals from stack'
b = b + temp2;

}
return b;

}



Program Analysis for application-level 
checkpointing

• Jim Ezick and Dan
• If i0..i99 are unchanged at L102, 

then L0..L99 can be used to 
reinitialize

• Save minimal data to checkpoint 
(ie, k)

• Construct recovery script to 
reinitialize remaining data

• “compiler-theoretic” view of the 
problem (dominator trees)

• Tradeoff b/w size of checkpoint and 
recovery cost.

L0: i0 = 0;
.
.
.

L99: i99 = 0;
L100: k = 0;
L101: while (k < 1000)
L102: // check point here
L103: print f(k,i0,...,i99)
L104: k = k+1



Improved Algorithms for Finding Best Recovery 
Lines

• Kamen Yotov
• Uncoordinated 

Checkpointing and 
(Optimistic) Message 
Logging

• Simplified the classic 
algorithm
(4 colors to 2)

• Because it’s based on DFS, 
it’s easier to understand and 
implement.
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MPI/FT

• Sequential checkpointing is working
• MPI “hooks” are implemented
• Engineering difficulty in getting the two to work together.



MPI/FT (cont.)

• Sequential checkpointing architecture
• Challenge – isolate client state from system state

Master

Client

Checkpointing

Master

Client

Restore

“Checkpoint me”

ReadProcessMemory

“Resume”

WriteProcessMemory



MPI/FT (cont.)

• What should the MPI architecture be?

Master

Client
MPI

Master

Client

MPI

MPI_stub

• “Tangled” MPI state • Poor performance?



Programming with Web Services

• Not implementing the web services themselves
(component program)

• Rather, programming with web services as external 
components (control program)

• Assumptions,
– A request to a web service can take a very long time to 

complete.
– Failures are possible (likely) during the execution of the 

control program



Dataflow Machine Model

• c.f. Von Neuman
• Machine is collection of 

computational nodes and 
dataflow edges

• Values flow along edges as 
tokens

• Nodes “fire” when tokens 
available on all in edges



Historical dataflow machines

• Properties
– Inherently parallel
– Latency tolerance

• In the literature
– Thread models (e.g., fibers)
– Dependence Flow Graphs 

(DFG’s)

• Inspired architectures
– Monsoon
– Tera, Earth/Manna

• Inspired programming 
languages
– Id, Id Noveau
– SSISL



Dataflow – the dark side

• Dataflow machines are slow
– Custom chips
– Designed for throughput, not peak

• Dataflow languages are hard
– Scheduling for conventional machines is hard
– Programmers are used to thinking about state
– Legacy code without a killer app



Perfect for Web Services

• Control program for web services
– Latency and fault tolerance is key
– Efficient scheduling isn’t (b/c latencies are unpredictable)
– Control programs are small and are novel



Architecture for Programming Web Services

Single Assignment λ-calculus
(Scheme or ML with write-once object)

SAλ Compiler

Dataflow Graph

Dataflow VM

Service

Service

Service

(SOAP or
.NET)



Adaptive Compilation

• Empirical Optimization – use experiments to guide 
parameter selection

• ATLAS – MMM optimized for one cache level
– Parameters – unrolling, block-size, etc.
– Experiments run for hours or days

• Memory Hierarchies are very deep (more than 3-levels)
– Brute-force approach is not practical



Adaptive Compilation (cont.)

• Our approach
– Use performance models to find neighborhood
– Use experimentation to find optimal parameter values

• Benefits
– Much faster than ATLAS-style
– Therefore can tackle multiple levels of memory hierarchy.

• How to develop models
– By hand
– By machine learning



Simulated Cache Misses for MMM



Discovering cache parameters

• Models are based upon certain cache parameters
– Cache-size
– Line-size
– Associativity
– Miss penalty

• Remember HW#1?
– Looking at machine learning and heuristic methods.



History

• 80% of the code of a typical business application deals 
with data manipulation (access, selection, I/O, 
transformations)

• Only 20% problem-oriented code
• Late 60s: How to reduce the not problem-oriented part?



Problems w/ Files

• File = dumb sequence of bytes (stream-oriented)
• Change in file format incurs costly source code changes 

(each function has to “know” the data layout)
• No guarantees for:

– Data integrity
– Referential Integrity

• No data manipulation language (DML)



Problems w/ Files (cont.)

• Poor interoperability
• No default support for:

– Fault tolerance
– Transactions

Problems solved in current generation RDBMS!



Solid Models

• Large unstructured data sets (and relations=structure) 
involved: Topology, Geometry, Mesh(es), Material 
properties

• Distinct (e.g. pre- and post-processing) phases with 
different access patterns

• Cannot be effectively handled without a querying 
language!



Coupled Thermo-Mechanical Simulation

• Heat conduction
– Heat fluxes on the central hole from MSU

– Fixed temperature (500K) for the cooling holes

• Solve for Temperature, spawn off wavelet analysis

• Coupling
– Thermal stresses
– Temperature dependent Young’s modulus and Poisson ratio

• Deformation
– Pressures and shear stresses on the inner hole from MSU
– Fixed displacement on one end surface

• Solve for displacement



Query Example
SELECT A.m_tet_id

FROM
(SELECT m_tet_id

FROM MVerticesOfMTetrahedron
WHERE m_vertex_id IN

(SELECT m_vertex_id
FROM MVerticesOfMTrianglesOnTSurface
WHERE m_triangle_id IN

(SELECT m_triangle_id
FROM MSU_wall_conditions)

)
GROUP BY m_tet_id
HAVING COUNT(m_vertex_id) = '3‘

) AS A
JOIN

TPartitioning AS B ON A.m_tet_id = B.m_tet_id
WHERE B.partition = ‘my_MPI_rank';



Adaptivity

• Modeling
– Coupling

• Algorithmic
– Identify hotspots and stress concentrations
– Explore different discretization techniques

• “FEM backend”
– H- and P-adaptivity
– Different solvers and preconditioners

• Database
– Query granularity



Advantages

• Database preserves a global view in a distributed 
simulation

• Reduced code size (SQL statements = strings, ODBC 
calls)

• The power of SELECT
• Interoperability (ODBC, OLE DB, ADO, HTTP, XML, …)
• Higher concurrency



Collaborations

• Cornell
– Paul Chew, Steve Vavasis, Bart Selman, Carla Gomes
– Cornell Fracture Group, Civil Engineering
– Cornell Theory Center

• Engineering Research Center, Mississippi State 
University

• College of William and Mary
• Dept of Comp Sci, UIUC
• IBM TJW


