Compiling High Performance Fortran (HPF)

Material taken from

- "A Linear Algebra Framework for Static HPF Code Distribution", by Ancourt, Irigoin, et al.

Overview of HPF

- Sequential fortran with annotations/directives.
- Supports "data-parallel" style of programming.
- Data-parallel $=$ programmer specifies how the data is to be "parallelized". The compiler determines the rest.

Virtual and physical processors

- Templates - virtual processors
!HPF\$ template T(0:99), T2(0:99)
- Processors
! HPF $\$$ processors P (0:4)

$\underline{\text { Alignment }}$

- Mapping array objects onto templates
! HPF \$ align A(i,j,*) with $T(i, j)$
! HPF $\$$ align $B(i)$ with $T(i, *)$
- $\mathrm{T}(\mathrm{i}, *)$ - replication.

HPF Rules:

- Each array index can be used at most once in a template subscript expression in any given alignment.
- Each subsript expression cannot contain more than one index.

Distribution

- Mapping virtual processors onto physical processors.
!HPF\$ distribute T(block(20)), T2(*, cyclic(1)) onto P
- block and block(B)
- cyclic and cyclic(B)
$\underline{\text { Parallel loops }}$
!HPF\$ INDEPENDENT (j,i)
do $j=1$, m
do $i=1, n$
$A(i, j)=f(\ldots)$
enddo
enddo

FORALL ($\mathrm{i}=1: \mathrm{n}, \mathrm{j}=1: \mathrm{m}$)

$$
A(i, j)=f(A, \ldots)
$$

Computation alignment

Data-parallel,

- implicit - let the compiler decide.
- owner-computes rules - owner of lhs performs the computation.

Explicit computational alignment.

```
!HPF$ INDEPENDENT(j,i)
```

do $j=1, m$

$$
\text { do } i=1, \mathrm{n}
$$

! HPF $\$$ ON($\operatorname{HOME}(A(i, j)))$

$$
A(i, j)=f(\ldots)
$$

enddo
enddo

Modelling directives using linear algebra

The usual suspects:

$$
\begin{array}{r}
0 \leq a \leq D \\
0 \leq i \leq L \\
F i=a
\end{array}
$$

Other obvious stuff:

$$
\begin{gathered}
0 \leq t \leq T \\
0 \leq p \leq P
\end{gathered}
$$

$\underline{\text { Modelling alignment (cont.) }}$

- alignement w/o replication

$$
t=A a+s_{0}
$$

example:

$$
\begin{aligned}
& \text { align } A(*, i, j) \text { with } T(2 * j-1,-i+7) \\
& \qquad t_{1}=2 a_{3}-1, \quad t_{2}=-a_{2}+7
\end{aligned}
$$

$\underline{\text { Modelling alignment }}$

- alignement w/ replication

$$
R t=A a+s_{0}
$$

example:
align A(i) with $\mathrm{T}(2 * i-1, *)$

$$
t_{1}=2 a_{1}-1
$$

Modelling distribution

- map from $t \rightarrow<p, c, l>$, where p is the processor number, c is the cycle number, and l is the offset within the block.
- block distribution,

$$
\Pi t=C p+l
$$

where C is matrix with block sizes along diagonal, and Π is a projection matrix used when a $*$ appears in the distribution.

- cyclic distribution,

$$
\Pi t=P c+p
$$

where P is a matrix with the dimensions of the processor space along the diagonal.

Modelling distribution (cont.)

- block/cyclic distribution

$$
\Pi t=C P c+C p+l
$$

example,
template $\mathrm{T}(0: 99,0: 99,0: 99)$
processors $\mathrm{P}(0: 9,0: 9)$
distribute $\mathrm{T}(*, \operatorname{cyclic}(4), \mathrm{block}(13))$ onto P

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) t=\left(\begin{array}{cc}
40 & 0 \\
0 & 130
\end{array}\right) c+\left(\begin{array}{cc}
4 & 0 \\
0 & 10
\end{array}\right) p+l
$$

Code generation

- The alignments,

$$
\begin{aligned}
& R_{\mathrm{X}} t=A_{\mathrm{X}} a+s_{\mathrm{X} 0} \\
& R_{\mathrm{Y}} t=A_{\mathrm{Y}} a+s_{\mathrm{Y} 0} \\
& R_{\mathrm{Z}} t=A_{\mathrm{Z}} a+s_{\mathrm{Z} 0}
\end{aligned}
$$

- The distribution,

$$
\Pi t=C P c+C p+l
$$

- The original code:
! HPF $\$$ INDEPENDENT (i)
forall ($L i \leq b_{0}(n)$)

$$
\mathrm{X}\left(S_{\mathrm{X}} i+a_{\mathrm{X}}{ }_{0}(n)\right)=\mathrm{f}\left(\mathrm{Y}\left(S_{\mathrm{Y}} i+a_{\mathrm{Y}}{ }_{0}(n)\right),\right.
$$

$$
\left.\mathrm{Z}\left(S_{\mathrm{Z}} i+a_{\mathrm{Z}} \quad(n)\right), \ldots\right)
$$

$\underline{\text { Sets for codegen }}$

- Own set - array elements each processor "owns"

$$
\begin{gathered}
O w n_{\mathrm{X}}(p)=\left\{a \mid \exists t, \exists c, \exists l, \text { s.t. } R_{\mathrm{X}} t=A_{\mathrm{X}} a+s_{\mathrm{X} 0}\right. \\
\Pi t=C_{P} c+C_{p}+l \\
0 \leq a \leq \operatorname{diag}\left(D_{\mathrm{X}}\right) \\
0 \leq p \leq \operatorname{diag}(P) \\
0 \leq l \leq \operatorname{diag}(C) \\
0 \leq t \leq \operatorname{diag}(T)\}
\end{gathered}
$$

$\underline{\text { Sets for codegen (cont.) }}$

- Computes set - iterations assigned to each processor
- Owner computes rule -

$$
\operatorname{Compute}(p)=\left\{i \mid S_{\mathrm{X}} i+a_{\mathrm{X} 0}(n) \in O w n_{\mathrm{X}}(p) \wedge L i \leq b_{0}(n)\right\}
$$

- View Set - data elements accessors by processor

$$
\operatorname{View}_{\mathrm{Y}}(p)=\left\{a \mid \exists i \in \operatorname{Compute}(p) \text { s.t. } a=S_{\mathrm{Y}} i+a_{\mathrm{Y} 0}(n)\right\}
$$

- Communication Sets

$$
\begin{aligned}
\operatorname{Send}_{\mathrm{Y}}\left(p, p^{\prime}\right) & =\operatorname{Vwn}_{\mathrm{Y}}(p) \cap \operatorname{View}_{\mathrm{Y}}\left(p^{\prime}\right) \\
\operatorname{Receive}_{\mathrm{Y}}\left(p, p^{\prime}\right) & =\operatorname{View}_{\mathrm{Y}}(p) \cap \operatorname{Own}_{\mathrm{Y}}\left(p^{\prime}\right)
\end{aligned}
$$

Pseudo-code

```
real X'((c,l) \inOwn
        Y'((c,l) \in Own (p)),
        Z'}((c,l)\inOw\mp@subsup{n}{\textrm{Z}}{(p))
forall(U \in { Y'},\mp@subsup{\textrm{Z}}{}{\prime},\ldots}
    forall(( }p,\mp@subsup{p}{}{\prime}),p\not=\mp@subsup{p}{}{\prime},\mp@subsup{\operatorname{Send}}{\textrm{U}}{(}(p,\mp@subsup{p}{}{\prime})\not=\emptyset
        forall((l,c) \in Send}\mp@subsup{|}{\textrm{U}}{(}(p,\mp@subsup{p}{}{\prime})
        send( }\mp@subsup{p}{}{\prime},\textrm{U}(l,c)
forall(U \in {Y'
        forall(( }p,\mp@subsup{p}{}{\prime}),p\not=\mp@subsup{p}{}{\prime},\mp@subsup{\operatorname{Receive}}{\textrm{U}}{(}(p,\mp@subsup{p}{}{\prime})\not=\emptyset
        forall((l,c) \in Receive
            U}(l,c)=\operatorname{receive( }\mp@subsup{p}{}{\prime}
if Compute(p) \not= \emptyset
        forall((l,c) \in Compute(p))
```


Generating the loops

- Simple method: Fourier-motzkin
- Heuristic: choose l, c loop order. Why?
- More sophisticated methods for arrays.

Blocking communication

```
forall(( }p,\mp@subsup{p}{}{\prime}),p\not=\mp@subsup{p}{}{\prime},\mp@subsup{\operatorname{Send}}{\textrm{U}}{(}(p,\mp@subsup{p}{}{\prime})\not=\emptyset
        bufinx=1
        forall((l,c) \in Send}\mp@subsup{|}{\textrm{U}}{(}(p,\mp@subsup{p}{}{\prime})
            send_buffer(bufinx) = U(l,c)
            bufinx = bufinx + 1
    send( }\mp@subsup{p}{}{\prime}\mathrm{ ,send_buffer)
forall(( }p,\mp@subsup{p}{}{\prime}),p\not=\mp@subsup{p}{}{\prime},\mp@subsup{\operatorname{Receive}}{\textrm{U}}{(}(p,\mp@subsup{p}{}{\prime})\not=\emptyset
    receive(p',recv_buffer)
    bufinx=1
    forall((l,c) \in Receive ( 
        U}(l,c)= recv_buffer(bufinx)
        bufinx = bufinx + 1
```


Generating the arrays

- Use Fourier-Motzkin to find bounds on l and c.
- Example,

```
        real A(0:42)
!HPF$ template T(0:127)
!HPF$ processors P(0:3)
!HPF$ align A(i) with T(3*i)
!HPF$ distribute T(cyclic(4)) onto P
```

Generating the arrays (cont.)

- Lots of holes. . .

Generating the arrays (cont.)

- Let $x=(l, c, a, t, i)$, then $F x=f_{0}(n, p)$, where

$$
F=\left(\begin{array}{ccccc}
0 & 0 & A & -R & 0 \\
I & C P & 0 & -I & 0 \\
0 & 0 & -I & 0 & S
\end{array}\right) \text { and } f_{0}(n, p)=\left(\begin{array}{c}
s_{0} \\
-C p \\
a_{0}(n)
\end{array}\right)
$$

- Find the lattice.

Finding the lattice

- Hermite Normal Form: $L=F U$

$$
\begin{gathered}
F x=f_{0}(n, p) \\
F U U^{-1} x=f_{0}(n, p)
\end{gathered}
$$

- Let $x=U v$,

$$
\begin{gathered}
L v=f_{0}(n, p) \\
\left(\begin{array}{ll}
\tilde{L} & 0
\end{array}\right)\binom{v_{0}(n, p)}{v^{\prime}}=f_{0}(n, p)
\end{gathered}
$$

Finding the lattice (cont.)

- \tilde{L} is unimodular.

$$
v_{0}(n, p)=\tilde{L}^{-1} f_{0}(n, p)
$$

- The final form,

$$
\begin{gathered}
x=Q v=\left(\begin{array}{ll}
Q_{0} & F^{\prime}
\end{array}\right)\binom{v_{0}(n, p)}{v^{\prime}} \\
x=Q_{0} v_{0}(n, p)+F^{\prime} v^{\prime}
\end{gathered}
$$

- Additional tricks to turn trapezoids into ragged rectangles.

Computing Alignment Automatically

Material taken from

- "Solving Alignment Using Elementary Linear Algebra", by Kotlyar, et al.

Collocation

What does it mean for iterations and data to be collocated?

- Array access function, $F i+f=a$
- Computation alignment, $t_{i}=C i+c$
- Data alignment, $t_{a}=D a+d$
- therefore, $\forall i, C i+c=D(F i+f)+d$

Collocation

$$
\left[\begin{array}{lll}
C & d
\end{array}\right]=\left[\begin{array}{lll}
D & d
\end{array}\right]\left[\begin{array}{ll}
F & f \\
0 & 1
\end{array}\right]
$$

Let,

$$
\tilde{F}=\left[\begin{array}{cc}
F & f \\
0 & 1
\end{array}\right] \quad \tilde{C}=\left[\begin{array}{ll}
C & c
\end{array}\right] \quad \tilde{D}=\left[\begin{array}{ll}
D & d
\end{array}\right]
$$

$$
\begin{gathered}
\tilde{C}-\tilde{D} \tilde{F}=0 \\
{\left[\begin{array}{ll}
\tilde{C} & \tilde{D}
\end{array}\right]\left[\begin{array}{c}
I \\
-\tilde{F}
\end{array}\right]=0}
\end{gathered}
$$

- \tilde{C} and \tilde{D} are the unknowns.
- "Solve" by finding vectors that span the null space.

Multiple Loops and Arrays

Set of contraints,

$$
\left[\begin{array}{ll}
\tilde{C}_{k} & \tilde{D}_{j}
\end{array}\right]\left[\begin{array}{c}
I \\
-\tilde{F}_{m}
\end{array}\right]=0
$$

as $V U=0$, where

$$
\begin{aligned}
V & =\left[\begin{array}{lllll}
C_{1} & \ldots & D_{1} \ldots
\end{array}\right] \quad U=\left[\begin{array}{llllll}
\ldots & U_{k j m} \ldots
\end{array}\right] \\
U_{k j m} & =\left[\begin{array}{llllllll}
0 & \ldots & 0 & I & 0 & \ldots & 0 & -\tilde{F}_{k} 0 \\
\ldots & \ldots
\end{array}\right]^{T}
\end{aligned}
$$

Multiple Loops and Arrays (cont.)

$$
V U=0
$$

- V is the set of unknowns
- Find vectors to span the null space
- Reduce the solution basis (make sure the dimension of C_{k} is correct).
$\underline{\text { Replication }}$

$$
R C=D F
$$

Non-linear
Heuristic,

- Solve $C=D F$ for non-replicated arrays
- Solve $R C=D F$.

Heuristic

- Null space is $[0] \Rightarrow$ execute everything sequentially.
- Have to drop $C=D F$ contraints.
- Heurisitc,
- If contraints differ only by f, then use only one of them.
- Pick contraints to maximize parallelism, then use replication.
- Pick contraints for largest arrays first.

