
�

�

�

�

Interprocedural Dataflow Analysis

1

�

�

�

�

Propagating information across procedure boundaries is useful.

• Optimize caller using information about callee

x := 2

CALL f(x) //call by reference

...x... //is x equal to 2 here?? Need to look at f

• Optimize callee using information about callers

... PROCEDURE f(a,b)

CALL f(x,5)

...

• We might generate specialized code for f in which b is 5.
• We might clone f and specialize clone.
• We might inline f.

Where do such opportunities arise? (i) calling library code (ii)
object-oriented programs.

2

�

�

�

�

Facts about interprocedural dataflow analysis

• Significantly harder asymptotically and to implement than
intraprocedural dataflow analysis

• Intraprocedural analysis: unknowns are lattice values.
• Interprocedural analysis: unknowns are functions on lattice

values.
• Aliasing: different program names for same location

• Strategies for dealing with complexity:

• invent special-purpose algorithms that work for important
special cases (eg, if the lattice is finite or of bounded height)

• use general-purpose techniques that compute approximate
but conservative solutions

3

�

�

�

�

Game plan for inter-procedural analysis lectures:

• Start with call-by-value language
Key problem:solving dataflow function equations

• Call-by-value + global variables
Some problems have structure we can exploit to speed up
analysis.

• Call-by-reference language
Additional problem: aliasing

4

�

�

�

�

Let us begin with simple program model in which there is no
aliasing

MAIN()

var p,q;

p = read();

q = f(p,3);

...

PROCEDURE f(x,y)

var z,a;

if (x > 0) z = x;

a = y;

...f(y,z)...

• no higher-order procedures• no data structures• no global variables• call-by-value• assignments in procedure modify locals and parameters• recursion is allowed

Check: no aliasing

5

�

�

�

�

Key data structure: Call (multi)graph

• Structure:
Nodes: one for each procedure
Edges: from node f to node g if procedure f may invoke
procedure g

 ... f(...)
 g(...)
 ...f(...)
 ...

MAIN ()

MAIN

f

g

h

Call Graph

f(..)
 ...f(...)
 ...g(...)

g(..)
 ...h(...)..

h(..)
 ...g(...)...

Program

6

�

�

�

�

• Algorithm: Building call graph is trivial if there are no
higher-order procedures.

• Use: Call graph plays a role sort-of like that of control flow
graph in intraprocedural analysis, but not quite....

7

�

�

�

�

START

END

START

END

id

f

PROCEDURE f (..)

PROCEDURE id(n)

......id(3).....
 id(2)

 return n;

This loses precision: in our example, we would not detect that id(2) is 2!

 such as blue edge into id and red edge out of id

 However, this reduction of inter-procedural analysis to the intra-procedural case
is safe.

forward dataflow problem:
 - merge information from all call sites of procedure at START
 - copy dataflow information coming out of END to all return sites

One obvious approach: reduce interproc case to intraproc case

Problem: information propagates along impossible interprocedural paths

It is called context-insensitive analysis.

Context-insensitive analysis

8

�

�

�

�

Context-sensitive analysis

- model each program procedure by a function on dataflow values
- to analyze dataflow effect of a call to procedure g, dataflow analyzer
 invokes the associated function, passing it some dataflow values
 and getting dataflow values back
- solves problem of avoiding dataflow mixing

PROCEDURE f (..)

PROCEDURE id(n)

......id(3).....
 id(2)

 return n;

function fc(...)
 ...idc(2)....
 ...idc(3)....

function idc(n)
 return n;

Dataflow functions for constant propagation

Another implementation: build the composite graph as in context-insensitive analysis
but propagate dataflow values together with a "tag" that identifies call sequence
that generated that value (Sharir and Pnueli)

One implementation of context-sensitive analysis:

Do not mix dataflow information from different call-sites of a procedure

9

�

�

�

�

Main problem with context-sensitive analysis: termination

• Intuitively, we are doing something similar to a symbolic
execution of program.

• Analysis must terminate even if program execution does not
terminate!

• Difficulty with recursive procedures: analysis usually requires
symbolic execution of both sides of conditionals, so how do we
ensure termination? Here’s an example where program
terminates but analysis would not.

10

�

�

�

�

procedure main() { function mainc() {

var p; p = bottom;

p = read(); p = T;

return f(3,p); return fc(3,p);

}

procedure f(n,p) { function fc(n,p) {

t1 = t2 = t3 = bottom;

if (n > p) if (n > p)

then return f(n-1,p); then t1 = fc(n-1,p);

else return 1; else t2 = 1

} t3 = join(t1,t2);

return t3;

11

�

�

�

�

Source of termination problem:

The recursive definition of fc in previous slide is really an
equational definition of fc: interpreting this definition as an
“executable function” gets us into trouble in general.

Two important special cases:

• No recursion in program: no problem with non-termination in
interpreting equational definitions as functions.
Determining there is no recursion: call-graph should have no
cycles.
This idea does not work even in the presence of static recursion
which even FORTRAN allows.Static recursion: text of program
has recursive calls; Dynamic recursion: at runtime, two or more
activations of a procedure coexist at some point in time.

• Domain is finite: solve equations iteratively by tabulating
values of functions.

12

�

�

�

�

- Example: constant propagation in which all values other than 0 and 1 are set to T.

0 1

T

|

function fc(n,p)
 {t1 = t2 = t3 = bottom;

if (n>p) then t1 = fc(n-1,p);
 else t2 = 1;
t3 = join(t1,t2);
return t3;}

- necessary condition: finite lattice

Computing each element of sequence: make a table of output for each possible input value
Checking convergence: same table is obtained for two successive elements in sequence.

Termination: from monotonicity and finiteness of domain.

fc[0] (n,p) = |

fc[i+1](n,p) =

if (n>p) then t1 = fc[i](n-1,p);
 else t2 = 1;
t3 = join(t1,t2);
return t3;}

 {t1 = t2 = t3 = bottom;

Compute a sequence of approximations to fc as follows: For our example:

fc(n,p) = 1

Solving recursive function equations by tabulation

13

�

�

�

�

What do we do if we have recursion and domain is not finite?

Usual strategy: Replace recursive dataflow function with
non-recursive conservative approximation

1. Identify recursive calls in call graph, and approximate their
return values to T. Then, solve resulting acyclic problem.

function fc(n,p){ function fc(n,p) {

t1 = t2 = t3 = bottom; t1 = t2 = t3 = bottom;

if (n > p) if (n > p)

then t1 = fc(n-1,p); ---> then t1 = T;

else t2 = 1; else t2 = 1

t3 = join(t1,t2); t3 = join(t1,t2);

return t3;} return t3;}

Recursive call identification: back edges in DFS of call-graph (not

necessarily unique)

14

�

�

�

�

2. Solve context-insensitive problem and use result to approximate the

effect of recursive calls.

fc(n,p) {
 t1 = t2 = t3 = bottom;
 if (n > p)

 t3 = join(t1,t2);
 return t3;
}

 then t1 = fc(n-1,p);
 else t2 = 1;

START

n>p

t2 = 1

fcrecursive
call edge

- value on "return edge" will be an upper bound of possible return values

[3,T]
 context-sensitive problem
- replace recursive call with that value and solve acyclic

call fc(n-1,p)

return t3

t1 =

replace recursive call
by value on return edge

at end of context-insensitive analysis

15

�

�

�

�

Adding global variables to program model:

GLOBAL G1, G2, G3

MAIN()

var p,q

p = f(G1,3); //S1 => MOD-S1 is {p,G2}

...

PROCEDURE f(x,y)

var z,a

if (x > 0) G2 := x; // S2 => MOD-S2 is {G2}

z = G1; // S3 => MOD-S3 is {z}

...f(G1,z)...

Still no aliasing.

Inter-procedural dataflow analysis: simple extension of call-by-value case.

(eg) Context-sensitive inter-procedural constant propagation: dataflow

function for procedure will have one additional parameter for each global

variable.

16

�

�

�

�

Exploiting structure in inter-procedural dataflow analysis

• Just as in intra-procedural case, inter-procedural problems may
have structure that can be exploited to speed up solution.

• Exploiting intra-procedural structure: as before
• Inter-procedural structure: in the call graph
• For many problems, we can exploit strongly connected

components in call graph to speed up analysis (eg. MOD
computation)

17

�

�

�

�

Interprocedural dataflow problem: computing MOD [Banning]
For any statement s, the set MOD-s is the set of variables visible to
s that may be modified directly or indirectly by execution of s.

GLOBAL G1, G2, G3

MAIN()

var p,q

p = f(G1,3); //S1 => MOD-S1 is {p,G2}

...

PROCEDURE f(x,y)

var z,a

if (x > 0) G2 := x; // S2 => MOD-S2 is {G2}

z = G1; // S3 => MOD-S3 is {z}

...f(G1,z)...

Auxiliary sets: For any procedure f, GMOD-f is the set of global variables that may be modified directly or

indirectly by invoking f.

In example, GMOD-MAIN = {G2}, and GMOD-f = {G2}

For any statement s, MOD-s is the union of

• set of variables that may be modified directly in statement (IMOD)• set of globals that may be modified directly or indirectly by procedure invocations in s
(GMOD)

So given GMOD sets, MOD sets are easy to compute.

18

�

�

�

�

How do we compute GMOD sets?

Write down a set of lattice equations and solve them.

• Lattice: power-set of global variables
• Equations: if procedure f has assignments to globals Gi,Gj,..

and it may invoke procedures g,h,.. equation for GMOD-f is

GMOD-f = {Gi,Gj...} U GMOD-g U GMOD-h...

19

�

�

�

�
 ...g(...)...

G3 := ...
h(..)

G1 := ...
 ...h(...)..

g(..)

 ...g(...)
 ...f(...)

G1 := ...

f(..)

 ... f(...)
 g(...)
 ...f(...)
 ...

MAIN ()
GLOBAL G1, G2, G3;

Program

GMOD-f = {G1} U GMOD-g U GMOD-f

GMOD-g = {G1} U GMOD-h

GMOD-h = {G3} U GMOD-g

GMOD-main = GMOD-f U GMOD-g

20

�

�

�

�

Observations

• We can use any iterative technique we discussed in
intra-procedural case to solve these inter-procedural equations.

• Is there structure that can be exploited to reduce number of
iterations? Yes!!

• In our problem, information flows from invoked procedure
to invokee.

• So consider equations in “reverse invocation order”. See
next slide.

21

�

�

�

�
 ...g(...)...

G3 := ...
h(..)

G1 := ...
 ...h(...)..

g(..)

 ...g(...)
 ...f(...)

G1 := ...

f(..)

g,h

f

MAIN

 ... f(...)
 g(...)
 ...f(...)
 ...

MAIN ()

MAIN

f

g

h

GLOBAL G1, G2, G3;

GMOD-main = GMOD-f U GMOD-g

GMOD-f = {G1} U GMOD-g U GMOD-f

GMOD-g = {G1} U GMOD-h

GMOD-h = {G3} U GMOD-g

Reverse invocation order

Program

Call Graph

22

�

�

�

�

Further simplication: note that GMOD sets for all procedures in a
single scc of call graph must be indentical.

So collapse equations for all procedures in a single scc into a single
equation!

GMOD-g = {G1} U GMOD-h => GMOD-gh = {G1,G3} U GMOD-gh

GMOD-h = {G3} U GMOD-g

Solving single equation for least solution: trivial! Just drop the
recursive term.

So in example, GMOD-g = GMOD-h = {G1,G3}

23

�

�

�

�

Summary: GMOD/MOD computation for call-by-value language

• Write down GMOD equations for the program.
• Partition equations by scc’s in call graph.
• Collapse equations in each scc into a single equation.
• In reverse topological order of acyclic condensate of call graph,

read off solutions to GMOD equations.
• For each statement, compute MOD set.

Complexity: O(size of program*number of variables)

Note: we can exploit scc’s any time we have a set of equations (eg,
block triangular systems in linear algebra)

24

�

�

�

�

Running example:
GLOBAL G1, G2, G3;

 ... f(...)
 g(...)
 ...f(...)
 ...

MAIN ()

Program

GMOD-main = GMOD-f U GMOD-g

GMOD-f = {G1} U GMOD-g U GMOD-f

GMOD-g = {G1} U GMOD-h

GMOD-h = {G3} U GMOD-g

 ...g(...)...
G3 := ...

h(..)

G1 := ...
 ...h(...)..

g(..)

 ...g(...)
 ...f(...)

G1 := ...

f(..)

GMOD-gh = {G1,G3}

GMOD-f = {G1,G3}

GMOD-main = {G1,G3}

25

�

�

�

�

Call-by-reference

Complications:

1. Effect of a procedure is not just globals it modifies but also
what happens to parameters

x := f(G1,w) //to compute MOD, we need to know what happens to G1 and w!

2. Aliasing: two program names for same location
GLOBAL G1,G2

procedure f(x,y)

x := 3; //S1

....

procedure g(z,w)

..f(G1,G2)...f(z,z)...f(w,z)

For first call to f, x and y are not aliases
For second call to f, x and y are aliases
For third call to f, x and y are aliases if w and z are aliases!
What is MOD-S1???

Let us handle these problems one at a time.

26

�

�

�

�

Aliasing

• MUST-ALIAS: two program names that definitely refer to the
same memory location.

GLOBAL G1;

procedure f(x) { <---- x and G1 are MUST-ALIASes within f

x = 7;}

procedure main() {

f(G1);

print(G1); }

MUST-ALIAS is an equivalence relation on names.

27

�

�

�

�

• MAY-ALIAS: two program names that may or may not refer to the

same memory location. MAY-ALIASing usually arises from

MUST-ALIASes through loss of information such as when we merge

information along different program paths.

GLOBAL G1,G2;

procedure f(x) { <---- x and G1 are MAY-ALIAS’s within f

x = 7;}

procedure main() {

f(G1) + f(G2);

print(G1); }

MAY-ALIAS relation is reflexive and symmetric but not necessarily
transitive.

28

�

�

�

�

Representation of aliasing information: alias pairs

GLOBAL G1,G2;

procedure f(x) { //ALIAS = {<x,x>,<x,G1>,<x,G2>}

x = 7;}

procedure main() {

f(G1) + f(G2);

print(G1); }

If <a,b> does not occur in an ALIAS relation, variables a and b are

definitely not aliased at the point in program where ALIAS relation

holds.

Some people also store may/must flag with each alias pair.

Alias pairs are an example of store-free alias representation.

Store-based alias representation: see when we talk about pointer analysis.

29

�

�

�

�

Using ALIAS relations in inter-procedural dataflow analysis:

For our language model, all statements in a procedure have same
alias relation (not true when we have pointers as in C).

Modify the dataflow transfer functions of statement with alias
information

• Constant propagation:

procedure f(x,y) { function fc(x,y) {

....

x := e; V-out = {

let n = Eval(e,V-in);

return V-out where

V-out[i] = V-in[i] if i is not aliased with x

V-out[i] = join(Vin[i],n) if i is MAY-ALIASed with x

V-out[i] = n if i is MUST-ALIASed with x

}

.....

} }

30

�

�

�

�

• MOD computation: close affected variables under aliasing

GLOBAL G1,G2

procedure f(x,y)

x := 3; // <--- MOD = {x,G1,y}

....

procedure g(z,w)

..f(G1,G2)...f(z,z)...f(w,z)

31

�

�

�

�

Computing alias relation for our program model: treat as a
dataflow problem...

• Compute one alias set for each procedure.
• Each call-site has an associated transfer function that generates

output alias set from alias set of caller (see next slide).
• Alias set of procedure = union of alias sets generated at its call

sites.
• Transfer functions are monotonic and lattice is finite.

32

�

�

�

�

procedure f(x,y) {

...}

procedure g(a,b,c) { //suppose alias set is A

....f(p,q)... //output alias set is B

}

Transfer(A, list of actuals, list of formals, globals)

B = { };

for each actual parameter p in call do {

if (p is a global variable) then append <p,x> to B;

else for each tuple <p,V> in A do

if V is a global variable then append <x,V> to B;

}

for each pair (p,q) of actual parameters in call do {

if ((<p,q> is in A) or (p and q are same variable))

then append <x,y> to B where x/y are formals bound to p/q by call.

return B;

33

�

�

�

�

Example: [adapted from Banning]
GLOBAL x,y,z;

procedure MAIN() ALIAS-MAIN = {}

p1(y); ALIAS-C1 = {<y,y1>}

p1(x); ALIAS-C2 = {<x,y1>}

p3(y,z); ALIAS-C3 = {<y,x3>,<z,y3>}

procedure p3(x3,y3) ALIAS-p3 = ALIAS-C3 U ALIAS-C6

x3 := ...;

y3 := ...;

x := ...;

procedure p1(y1) ALIAS-p1 = ALIAS-C1 U ALIAS-C2 U ALIAS-C7 U ALIAS-C8

p2(z); ALIAS-C4 = {<x2,z>}

p2(y1); ALIAS-C5 = Transfer(ALIAS-p1,(y1)->(x2),{x,y,z})

p3(y1,y); ALIAS-C6 = Transfer(ALIAS-p1,(y1,y)->(x3,y3),{x,y,z})

procedure p2(x2) ALIAS-p2 = ALIAS-C4 U ALIAS-C5

p1(x2); ALIAS-C7 = Transfer(ALIAS-p2,(x2)->(y1),{x,y,z})

p1(z); ALIAS-C8 = {<z,y1>}

Solution: ALIAS-p1 = {<y,y1>,<x,y1>,<z,y1>}

ALIAS-p2 = {<y,x2>,<x,x2>,<z,x2>}

ALIAS-p3 = {<y,y3>,<x,x3>,<z,x3>,<y3,x3>,<y,x3>,<z,y3>}

34

�

�

�

�

CALL p1(y) CALL p1(x) CALL p3(y,z)

CALL p3(y1,y)

CALL p2(z) CALL p2(y1)

MAIN

p1

p3

CALL p1(x2)

CALL p1(z)

ALIAS-MAIN = {}

ALIAS-p1
ALIAS-p3

p2

ALIAS-p2

35

�

�

�

�

More efficient ways of computing alias sets:

• Determine which globals are aliased with which formals by
using binding graph (see next slide).

• Graph has a node for each global and formal parameter; if
global/formal v1 is passed to formal v2, put an edge from
v1 to v2.

• All formals reachable from node for global g are aliased to g.

• Determining which formals are aliased to each other: use
pairwise binding graph. Left to reader.

36

�

�

�

�

x3 y3

y1

x2

x y z

- one node for each reference parameter and global
- if procedure f passes its reference parameter/global r1
 to procedure g as reference parameter r2,
 put an edge from r1 to r2

Structure of binding graph:

 may be aliased to that global
 all reference parameters reachable from a global variable in the binding graph

In our example:

 x may be aliased to y1, x3, x2
 y may be aliased to y1, y3, x2,x3
 z may be aliased to y1, x2, x3

Finding aliases between globals and formals:

Binding graph

37

�

�

�

�

Concern 2:GMOD must tell us what happens to globals AND
parameters.

One model: make GMOD into a function from variables to variables

w := f(G4,s); //S1

procedure f(x,y) => GMOD-f(v1,v2)

var a,b; return {G1,v1}

G1 := 5;

if (y>x) x:= 7;

...

Intuition: (assuming s,w have no non-trivial aliases)

MOD-S1 = {w} U GMOD-f(G4,s) = {w} U {G1,G4} = {w,G1,G4}

38

�

�

�

�

Example: [adapted from Banning]
GLOBAL x,y,z;

procedure MAIN() GMOD-MAIN()

p1(y); return GMOD-p1(y) U GMOD-1(x) U GMOD-p3(y,z)

p1(x);

p3(y,z);

procedure p3(x3,y3) GMOD-p3(m,n)

x3 := ...; return {m,n,x}

y3 := ...;

x := ...;

procedure p1(y1) GMOD-p1(m)

p2(z); return GMOD-p2(z) U GMOD-p2(m) U GMOD-p3(m,y)

p2(y1);

p3(y1,y);

procedure p2(x2) GMOD-p2(m)

p1(x2); return GMOD-p1(m) U GMOD-p1(z)

p1(z);

Need to solve recursive functional equations.

39

�

�

�

�

Without recursion, we can use “interpret equations as program”
trick.

Another approach: since our lattice is finite, we can always use
tabular approach.

GMOD-p3(m,n)

return {m,n,x}

GMOD-p1(m)

return GMOD-p2(z) U GMOD-p2(m) U GMOD-p3(m,y)

GMOD-p2(m)

return GMOD-p1(m) U GMOD-p1(z)

Iterations:

1 2 3 ... final

GMOD-p3(m,n): {} {m,n,x} {m,n,x} ... {m,n,x}

GMOD-p2(m): {} {} {} ... {m,y,x,z}

GMOD-p1(m): {} {} {m,y,x} ... {m,y,x,z}

40

�

�

�

�

Exploiting structure for computing GMOD

• call-by-value: we found GMOD sets without iteration

• find scc’s in call graph
• for each scc, compute union of side-effects to globals by

procedures in scc
• propagate GMOD sets in reverse invocation order

• can we use this trick for call-by-reference as well?
• Problem: GMOD sets contain both globals and parameters, so

GMOD sets of mutually recursive procedures will be different
in general.

• Idea: separate computation of side-effects to parameters from
side-effects to globals

41

�

�

�

�

Side-effects to parameters:

procedure f(a,b) ...

RMODf-a = true if execution of f modifies a directly or indirectly
GLOBAL x,y,z;

procedure MAIN()

p1(y);

p1(x);

p3(y,z);

procedure p3(x3,y3) RMODp3-x3 = true

x3 := ...; RMODp3-y3 = true

y3 := ...;

x := ...;

procedure p1(y1) RMODp1-y1 = RMODp2-x2 V RMODp3-x3

p2(z);

p2(y1);

p3(y1,y);

procedure p2(x2) RMODp2-x2 = RMODp1-y1

p1(x2);

p1(z);

Solution: RMODp3-x3 = RMODp3-y3 = RMODp1-y1 = RMODp2-x2 = true

42

�

�

�

�

Graphical way of solving RMOD equations: marker propagation

x3 y3

y1

x2

* *

A reference parameter of a procedure f may be modified
by execution of f if

 - f may write to parameter directly
 - f passes it to procedure g as a reference parameter,
 and g may modify the parameter

- build reverse of binding graph (ignore globals)

- if f modifies reference parameter r1 directly,
 put a mark on r1
- propagate marks along reverse binding graph edges

RMOD computation

Reverse of Binding Graph

- at the end of propagation, any variable that is marked
 corresponds to a reference parameter that may be modified

43

�

�

�

�

Side-effects to globals: similar to call-by-value
GLOBAL x,y,z;

procedure MAIN()

p1(y);

p1(x);

p3(y,z);

procedure p3(x3,y3) GLOBALp3 = {x}

x3 := ...;

y3 := ...;

x := ...;

procedure p1(y1) GLOBALp1 = GLOBALp2 U GLOBALp3

p2(z);

p2(y1);

p3(y1,y);

procedure p2(x2) GLOBALp2 = GLOBALp1

p1(x2);

p1(z);

Solution: GLOBALp1 = GLOBALp2 = GLOBALp3 = {x}

44

�

�

�

�

From RMOD and GLOBALS, we can read off GMOD sets:

GMODp1(m) = {x,m}

GMODp2(m) = {x,m}

GMODp3(m,n) = {x,m,n}

Oops...

What went wrong?

45

�

�

�

�

We did not take into account side-effects to globals that were
passed as parameters![Kennedy and Cooper]
Correct equations for GLOBAL sets: use RMOD information for
globals passed as parameters:
GLOBAL x,y,z;

procedure MAIN()

p1(y);

p1(x);

p3(y,z);

procedure p3(x3,y3) GLOBALp3 = {x}

x3 := ...;

y3 := ...;

x := ...;

procedure p1(y1) GLOBALp1 = {z} U GLOBALp2 U GLOBALp3 U {y}

p2(z);

p2(y1);

p3(y1,y);

procedure p2(x2) GLOBALp2 = {z} U GLOBALp1

p1(x2);

p1(z);

This gives the correct sets.

46

�

�

�

�

p3

p1

p2

{x}
{z}

{z,y}

Algorithm for side-effects to globals: GLOBAL

• Find acyclic condensate of the call graph.
• For each procedure, determine set of globals either assigned to

directly in procedure or passed by reference as a parameter to a
procedure that modifies that parameter (use RMOD
information for this).

• Union these sets for all procedures in an scc.
• Propagate these global sets in reverse invocation order in the

acylic condensate.

47

�

�

�

�

Putting it all together: GMOD computation

• Compute RMOD information

• build binding graph
• mark every node that represents a reference parameter

modified directly by its procedure
• propagate marks in biding graph: efficient approach would

compute scc’s and propagate in acyclic condensate
• for each procedure f, read off RMOD-f = set of reference

parameters of f that are marked.

• Compute GLOBALs information

• build call graph
• for each procedure, find all globals that are either modified

directly by procedure or passed as a reference parameter to
another procedure that modifies that parameter (use
RMOD for this)

48

�

�

�

�

• find scc’s of call graph and propagate sets in reverse
invocation order.

• From RMOD and GLOBALs sets, read off GMOD function for
each procedure f.

49

�

�

�

�

Summary

• Inter-procedural dataflow analysis: unknowns are functions on
dataflow values

• Need to solve recursive functional equations
• Important special cases for which exact solution is possible

• finite lattice: use tabular method
• acyclic call graph: interpret equations as program

• Approximate solution of functional equations: approximate
effect of backedges in call-graph

• Call-by-reference: need to take aliases into account
• Some interprocedural dataflow analysis problems can be

reduced to marker propagation by formulating in the right
graph. Key structure to exploit: strongly connected
components in call graph.

50

