Transforming Imperfectly Nested Loops

Classes of loop transformations:

- Iteration re-numbering: (eg) loop interchange Example

$$
\begin{array}{rlrl}
\text { DO } 10 \mathrm{~J} & =1,100 & \text { DO } 10 \mathrm{I}=1,100 \\
\text { DO } 10 \mathrm{I} & =1,100 & \text { vs } & \text { DO } 10 \mathrm{~J}=1,100 \\
\mathrm{Y}(\mathrm{I}) & =Y(I)+A(I, J) * X(J) & Y(I)=Y(I)+A(I, J) * X(J) \\
10 & Z(I) & =\ldots & \\
10 & Z(I) & =\ldots
\end{array}
$$

All statements in body affected identically.

- Statement re-ordering: (eg) loop distribution/jamming Example

$$
\begin{array}{rlrl}
\text { DO } 10 \mathrm{I} & =1,100 & \text { DO } 10 \mathrm{I}=1,100 \\
\mathrm{Y}(\mathrm{I}) & =\ldots & 10 \mathrm{Y}(\mathrm{I}) & =\ldots \\
10 \mathrm{Z}(\mathrm{I}) & =\ldots \mathrm{Y}(\mathrm{I}) \ldots & \text { vs. } & \text { DO } 20 \mathrm{~J}= \\
& & & 1,100 \\
& & 20 \mathrm{Z}(\mathrm{I}) & =\ldots Y(\mathrm{I}) \ldots
\end{array}
$$

Statement re-ordering can be static or dynamic

- Statement transformation:

Example: scalar expansion
DO $10 \mathrm{I}=1,100$
$\mathrm{~T}=\mathrm{f}(\mathrm{I}) \quad \mathrm{vs}$
$10 \mathrm{X}(\mathrm{I}, \mathrm{J})=\mathrm{T} * \mathrm{~T}$

$$
\begin{aligned}
& \mathrm{DO} 10 \mathrm{I}=1,100 \\
& \mathrm{~T}[\mathrm{I}]=\mathrm{f}(\mathrm{I}) \\
& 10 \mathrm{X}(\mathrm{I}, \mathrm{~J})=\mathrm{T}[\mathrm{I}] * \mathrm{~T}[\mathrm{I}]
\end{aligned}
$$

Statements themselves are altered.

Iteration renumbering transformations
We have already studied linear loop transformations.
Index set splitting: $N \rightarrow N 1+N 2$

Special case: loop peeling - only the first/last/both first and last iterations are done separately from main loop.

Legality: always legal

Typical use: Eliminate a 'problem iteration'
DO $10 \mathrm{I}=1, \mathrm{~N}$
$10 \mathrm{X}(\mathrm{aI}+\mathrm{b})=\mathrm{X}(\mathrm{c})+\ldots . \mathrm{vs}$
Weak SIV subscript: dependence equation is $a I_{w}+b=c$

$$
\Rightarrow I_{w}=(c-b) / a
$$

Split index set of loop into 3 parts:

- DO-ALL loop that does all iterations before I_{w}
- Iteration I_{w} by itself
- DO-ALL loop that does all iterations after I_{w}

Original Loop

After Index-set Splitting

Note: distance/direction are not adequate abstractions

Strip-mining: $N=N 1 * N 2$

$$
\text { DO } 10 \mathrm{I}=1, \mathrm{~N} \quad \text { DO } 10 \mathrm{Is}=1, \mathrm{~N}, \mathrm{~s}
$$

$$
10 Y(I)=X(I)+1 \quad \Rightarrow \quad D 010 I=I s, \min (I s+s-1, N)
$$

$$
10 \quad Y(I)=X(I)+1
$$

$\underline{\text { Stripmined Loop: strip size }=2}$
Inner loop does 's' iterations at a time.
Important transformation for vector machines:
's' = vector register length
Strip-mining is always legal.

To get clean bounds for inner loop, do last ' N mod s' iterations separately: index-set splitting

DO 10 Is $=1, \mathrm{~N}, \mathrm{~s}$
DO $10 \mathrm{I}=\mathrm{Is}, \min (\mathrm{Is}+\mathrm{s}-1, \mathrm{~N})$
$10 Y(I)=X(I)+1$
=>

DO 10 Is $=1, s *(N \operatorname{div} s)$
DO $10 \mathrm{I}=\mathrm{Is}, \mathrm{Is}+\mathrm{s}-1$
$10 Y(I)=X(I)+1$

DO $20 \mathrm{I}=(\mathrm{N} \operatorname{div} \mathrm{s}) * \mathrm{~s}+1$ to N
$20 Y(I)=X(I)+1$

Tiling: multi-dimensional strip-mining $N 1 X N 2=t 1 * t 2 * N 3 * N 4$

$$
\begin{gathered}
\text { DO } \quad \mathrm{I}=\ldots \\
\text { DO } \mathrm{J}=\ldots \\
\mathrm{S}
\end{gathered}
$$

$$
\begin{array}{rl}
\mathrm{DO} \mathrm{Ti}= & \ldots \\
\mathrm{DO} \mathrm{Tj} & =\ldots \\
\mathrm{DO} \mathrm{I} & =\ldots \\
\mathrm{DO} & \mathrm{~J}=\ldots \\
\mathrm{S}
\end{array}
$$

Old names for tiling: stripmine and interchange, loop quantization

Statement Sinking: useful for converting some imperfectly-nested loops into perfectly-nested ones
=>

$$
\begin{aligned}
& \text { do } k=1, N \\
& A(k, k)=\operatorname{sqrt}(A(k, k)) \\
& \text { do } i=k+1, N \\
& A(i, k)=A(i, k) / A(k, k) \text { <---- sink into inner loop } \\
& \text { do } j=k+1 \text {, i } \\
& A(i, j)-=A(i, k) * A(j, k) \\
& \text { do } k=1, N \\
& A(k, k)=\operatorname{sqrt}(A(k, k)) \\
& \text { do } i=k+1, N \\
& \text { do } j=k, i \\
& \quad \text { if }(j==k) A(i, k)=A(i, k) / A(k, k) \\
& \quad \text { if }(j!=k) A(i, j)-=A(i, k) * A(j, k)
\end{aligned}
$$

Basic idea of statement sinking:

1. Execute a pre/post-iteration of loop in which only sunk statement is executed.
2. Requires insertion of guards for all statements in new loop.

Singly-nested loop (SNL): imperfectly-nested loop in which each loop has only one other loop nested immediately within it.

Locality enhancement of SNL's in MIPSPro compiler:

- convert to perfectly-nested loop by statement sinking,
- locality-enhance perfectly-nested loop, and
- convert back to imperfectly-nested loop in code generation.

Statement Reordering Transformations

loop jamming/fusion $<=>$ loop distribution/fission
Example

$$
\begin{array}{rlrl}
\text { DO } & & \text { DO } 10 \mathrm{I}=1,100 & =1,100 \\
\mathrm{Y}(\mathrm{I}) & =\ldots & 10 \mathrm{Y}(\mathrm{I}) & =\ldots \\
10 & \mathrm{Z}(\mathrm{I}) & =\ldots \mathrm{Y}(\mathrm{I}) \ldots & \text { vs. }
\end{array} \quad \begin{array}{rlrl}
\text { DO } 20 \mathrm{~J} & =1,100 \\
& & 20 \mathrm{Z}(\mathrm{I}) & =\ldots \mathrm{Y}(\mathrm{I}) \ldots
\end{array}
$$

Utility of distribution: Can produce parallel loops as below

$$
\begin{array}{cll}
\text { DO } 10 \mathrm{I}=1,100 & & \text { DOALL } 10 \mathrm{I}=1,100 \\
& \mathrm{Y}(\mathrm{I})=\ldots . & \text { vs. } \\
10 \mathrm{Z}(\mathrm{I})=\mathrm{Y}(\mathrm{I}-1) \ldots . & & \text { DOALL } 20 \mathrm{I}^{\prime}=1,100 \\
& & 20 \mathrm{Z}\left(I^{\prime}\right)=Y\left(I^{\prime}-1\right) \ldots \ldots
\end{array}
$$

Loop fusion: promote reuse, eliminate array temporaries

Legality of loop fission: build the statement dependence graph

$$
\begin{aligned}
\mathrm{DO} \mathrm{I} & =1, \mathrm{~N} \\
\mathrm{~A}(\mathrm{I}) & =\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}-1) \\
\mathrm{B}(\mathrm{I}) & =\mathrm{C}(\mathrm{I}-1)^{*} \mathrm{X}+1 \\
\mathrm{C}(\mathrm{I}) & =1 / \mathrm{B}(\mathrm{I}) \\
\mathrm{D}(\mathrm{I}) & =\operatorname{sqrt}(\mathrm{C}(\mathrm{I}))
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{DO} \mathrm{I} & =1, \mathrm{~N} \\
\mathrm{~B}(\mathrm{I}) & =\mathrm{C}(\mathrm{I}-1)^{*} \mathrm{X}+1 \\
\mathrm{C}(\mathrm{I}) & =1 / \mathrm{B}(\mathrm{I}) \\
\mathrm{DO} \mathrm{I} & =1, \mathrm{~N} \\
\mathrm{~A}(\mathrm{I}) & =\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I}-1) \\
\mathrm{DO} \mathrm{I} & =1, \mathrm{~N} \\
\mathrm{D}(\mathrm{I}) & =\operatorname{sqrt}(\mathrm{C}(\mathrm{I}))
\end{aligned}
$$

Program
Statement Dependence
Acyclic Condensate
New Code

- Build the statement dependence graph:
nodes: assignment statements/if-then-else's
edges: dependences between statements (distance/direction is irrelevant)
- Find the acyclic condensate of statement dependence graph
- Each node in acyclic condensate can become one loop nest
- Order of new loop nests: any topological sort of condensate
- Nested loop fission: do in inside-out order, treating inner loop nests as black boxes

Legality of loop fusion:

Usually, we do not compute dependences across different loop nests.
Easy to compute though:
Flow dependence: test for fusion preventing dependence

$$
\begin{aligned}
& \mathrm{Iw}=\mathrm{Jr}+1 \\
& \mathrm{Jr}<\mathrm{Iw} \\
& 1 \leq \mathrm{Iw} \leq \mathrm{N} \\
& 1 \leq \mathrm{Jr} \leq \mathrm{N} \\
& \begin{array}{l}
\text { Loop fusion is legal if } \\
\text { (i) loop bounds are identical } \\
\text { (ii) loops are adjacent }
\end{array} \\
& \begin{array}{l}
\text { (iii) no fusion-preventing dependence }
\end{array}
\end{aligned}
$$

Statement transformation:
Example: scalar expansion

$$
\begin{array}{cc}
\text { DO } 10 \mathrm{I}=1,100 & \text { DO } 10 \mathrm{I}=1,100 \\
\mathrm{~T}=\mathrm{f}(\mathrm{I}) & \text { vs } \\
10 \mathrm{X}(\mathrm{I}, \mathrm{~J})=\mathrm{T} * \mathrm{~T} & \\
\hline \mathrm{I}]=\mathrm{f}(\mathrm{I}) \\
& 10 \mathrm{X}(\mathrm{I}, \mathrm{~J})=\mathrm{T}[\mathrm{I}] * T[\mathrm{I}]
\end{array}
$$

Anti- and output-dependences (resource dependences)arise from "storage reuse" in imperative languages (cf. functional languages).

Eliminating resource dependences: eliminate storage reuse.
Standard transformations: scalar/array expansion (shown above)

We got into perfectly-nested loop transformations by studying the effect of interchange and tiling on key kernels like matrix-vector product and matrix-matrix multiplication.

Let us study how imperfectly-nested loop transformations can be applied to other key routines to get a feel for the issues in applying these transformations.

Cholesky factorization from a numerical analyst's viewpoint:

- used to solve a system of linear equations $A x=b$
- A must be symmetric positive-definite
- compute L such that $L * L^{T}=A$, overwriting lower-triangular part of A with L
- obtain x be solving two triangular systems

Cholesky factorization from a compiler writer's viewpoint:

- Cholesky factorization has 6 loops like MMM, but loops are imperfectly-nested.
- All 6 permutations of these loops are legal.
- Variations of these 6 basic versions can be generated by transformations like loop distribution.

Column Cholesky: kij, right-looking versions

do $k=1, N$

```
A(k,k) = sqrt (A(k,k)) //square root statement
```

do $i=k+1, N$
$A(i, k)=A(i, k) / A(k, k) / / s c a l e$ statement
do $i=k+1, N$
do $j=k+1$, i
$A(i, j)-=A(i, k) * A(j, k) / / u p d a t e ~ s t a t e m e n t$

- Three assignment statements are called square root, scale and update statements.
- Compute columns of L column-by-column (indexed by k).
- Eagerly update portion of matrix to right of current column.
- Note: most data references and computations in update.

Interchanging i and j loops in kij version gives kji version.
Update is performed row by row.

$$
\begin{aligned}
& \text { do } k=1, N \\
& A(k, k)=\operatorname{sqrt}(A(k, k)) \\
& \text { do } i=k+1, N \\
& A(i, k)=A(i, k) / A(k, k) \\
& \text { do } j=k+1, N \\
& \text { do } i=j, N \\
& A(i, j)-=A(i, k) * A(j, k)
\end{aligned}
$$

Fusion of the two i loops in kij version produces a SNL.

$$
\begin{aligned}
& \text { do } k=1, N \\
& A(k, k)=\operatorname{sqrt}(A(k, k)) \\
& \text { do } i=k+1, N \\
& A(i, k)=A(i, k) / A(k, k) \\
& \text { do } j=k+1, i \\
& A(i, j)-=A(i, k) * A(j, k)
\end{aligned}
$$

Column Cholesky: jik left-looking versions

do $\mathrm{j}=1, \mathrm{~N}$
 do $k=1, j-1$

$$
A(i, j)=A(i, k) * A(j, k)
$$

$$
A(j, j)=\operatorname{sqrt}(A(j, j))
$$

$$
\text { do } i=j+1, N
$$

$$
A(i, j)=A(i, j) / A(j, j)
$$

- Compute columns of L column-by-column.
- Updates to column are done lazily, not eagerly.
- To compute column \mathbf{j}, portion of matrix to left of column is used to update current column.

Row Cholesky versions

for each element in row i

- find inner-product of two blue vectors
- update element x
- scale
- take square-root at end

These compute the matrix L row by row. Here is ijk -version of row Cholesky.

$$
\begin{aligned}
& \text { do } i=1, N \\
& \text { do } j=1, i \\
& \text { do } k=1, j-1 \\
& A(i, j)-=A(i, k) * A(j, k) \\
& \text { if }(j<i) A(i, j)=A(i, j) / A(j, j) \\
& \text { else } \quad A(i, i)=\operatorname{sqrt}(A(i, i))
\end{aligned}
$$

Locality enhancement in Cholesky factorization

- Most of data accesses are in update step.
- Ideal situation: distribute loops to isolate update and tile update loops.
- Unfortunately, loop distribution is not legal because it requires delaying all the updates till the end.

```
    do k = 1, N
        A(k,k) = sqrt (A(k,k)) //square root statement
        do i = k+1, N
            A(i,k) = A(i,k) / A(k,k) //scale statement
    do i = k+1,N
        do j = k+1, i
        A(i,j) -= A(i,k) * A(j,k) //update statement
=> loop distribution (illegal because of dependences)
    do k = 1, N
        A(k,k) = sqrt (A(k,k)) //square root statement
        do i = k+1, N
            A(i,k) = A(i,k) / A(k,k) //scale statement
    do k = 1, N
        do i = k+1, N
        do j = k+1, i
            A(i,j) -= A(i,k) * A(j,k) //update statement
```

After distribution, we could have tiled update statement, and obtained great performance....

$$
\begin{aligned}
& \text { do } k=1, N \\
& \text { do } i=k+1, N \\
& \text { do } j=k+1, i \\
& A(i, j)-=A(i, k) * A(j, k) \text { //update statement }
\end{aligned}
$$

Dependence vectors:

$$
\begin{array}{ll}
(A(i, j) \rightarrow A(i, j)): & (+, 0,0) \\
(A(i, j) \rightarrow A(i, k)): & (+, 0,+) \\
(A(i, j) \rightarrow A(j, k)): & (+, 0+,+)
\end{array}
$$

Let us study two distinct approaches to locality enhancement of Cholesky factorization:

- transformations to extract MMM computations hidden within Cholesky factorization: improvement of BLAS-3 content
- transformations to permit tiling of imperfectly-nested code

Key idea used in LAPACK library: "partial" distribution

- do processing on block-columns
- do updates to block-columns lazily
- processing of a block-column:

1. apply all delayed updates to current block-column
2. perform square root, scale and local update steps on current block column

- Key point: applying delayed updates to current block-column can be performed by calling BLAS-3 matrix-matrix multiplication.

How do we think about this in terms of loop transformations?

Intermediate representation of Cholesky factorization
Perfectly-nested loop that performs Cholesky factorization:

$$
\begin{aligned}
& \text { do } k=1, N \\
& \text { do } i=k, N \\
& \text { do } j=k, i \\
& \quad \text { if }(i==k \& \& j==k) A(k, k)=\operatorname{sqrt}(A(k, k)) ; \\
& \quad \text { if }(i<k \& \& j==k) A(i, k)=A(i, k) / A(k, k) ; \\
& \quad \text { if }(i>k \& \&>k) A(i, j)=A(i, k) * A(j, k) ;
\end{aligned}
$$

Easy to show that

- loop nest is fully permutable, and
- guards are mutually exclusive, so order of statement is irrelevant.

Generating intermediate form of Cholesky:
Converting kij-Fused version: only requires code sinking.
Converting kji version:

- interchange i and j loops to get kij version,
- apply loop fusion to i loops to get SNL, and
- use code sinking.

Converting other versions: much more challenging....

Convenient to express loop bounds of fully permutable perfectly nested loop in the following form:

```
do {i,j,k} in 1 <= k <= j <= i <= N
    if (i == k && j == k) A(k,k) = sqrt (A(k,k));
    if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);
    if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);
```


LAPACK-style blocking of intermediate form

Two levels of blocking:

1. convert to block-column computations to expose BLAS-3 computations
2. use handwritten codes to execute the BLAS-3 kernels
(1) Stripmine the j loop into blocks of size B:

$$
\begin{aligned}
& \text { do js = 0, N/B -1 //js enumerates block columns } \\
& \text { do } j=B * j s+1, B * j s+B \\
& \text { do }\{i, k\} \text { in } 1<=k<=j<=i<=N \\
& \text { if (i }==k \& \& j==k) A(k, k)=\operatorname{sqrt}(A(k, k)) \text {; } \\
& \text { if (i > k \&\& } j==k) A(i, k)=A(i, k) / A(k, k) \text {; } \\
& \text { if (i > k \&\& j >k) A(i,j) -= A(i,k) * A(j,k); }
\end{aligned}
$$

(2) Interchange the j loop into the innermost position:

$$
\begin{aligned}
& \text { do js }=0, N / B-1 \\
& \text { do } i=B * j s+1, N \\
& \text { do } k=1, \min (i, B * j s+B) \\
& \text { do } j=\max (B * j s+1, k), \min (i, B * j s+B) \\
& \\
& \quad \text { if }(i==k \& \& j==k) A(k, k)=\operatorname{sqrt}(A(k, k)) ; \\
& \\
& \quad \text { if }(i>k \& \& j==k) A(i, k)=A(i, k) / A(k, k) ; \\
& \\
& \\
& i f(i>k \& \& j>k) A(i, j)-=A(i, k) * A(j, k) ;
\end{aligned}
$$

(3) Index-set split i loop into $\mathrm{B}^{*} \mathrm{j}$ s $+1: \mathrm{B}^{*} \mathrm{j} \mathrm{s}+\mathrm{B}$ and $\mathrm{B}^{*} \mathrm{j} \mathrm{s}+\mathrm{B}+1: \mathrm{N}$.
(4) Index-set split k loop into $1: \mathrm{B}^{*} \mathrm{js}$ and $\mathrm{B}^{*} \mathrm{j}$ s $+1: m i n\left(\mathrm{i}, \mathrm{B}^{*} \mathrm{j} \mathrm{s}+\mathrm{B}\right)$.

$$
\text { do is }=0, N / B-1
$$

$$
\begin{aligned}
& \text { //Computation 1: an MMM } \\
& \text { do } i=B * j s+1, B * j s+B \\
& \text { do } k=1, B * j s \\
& \quad \text { do } j=B * j s+1, i \\
& \quad A(i, j)-=A(i, k) * A(j, k) ;
\end{aligned}
$$

//Computation 2: a small Cholesky factorization
do $i=B * j s+1, B * j s+B$
do $k=B * j s+1, i$
do $j=k, i$
if (i $==k \& \& j==k) A(k, k)=\operatorname{sqrt}(A(k, k))$;
if (i > k \&\& j == k) A(i,k) $=A(i, k) / A(k, k) ;$
if (i $>k \& \& j>k) A(i, j)=A(i, k) * A(j, k)$)

$$
\begin{aligned}
& \text { //Computation } 3: \text { an MMM } \\
& \text { do } i=B * j s+B+1, N \\
& \text { do } k=1, B * j s \\
& \text { do } j=B * j s+1, B * j s+B \\
& \quad A(i, j)-=A(i, k) * A(j, k) ;
\end{aligned}
$$

//Computation 4: a triangular solve do $i=B * j s+B+1, N$

$$
\text { do } k=B * j s+1, B * j s+B
$$

$$
\text { do } j=k, B * j s+B
$$

$$
\text { if }(j==k) A(i, k)=A(i, k) / A(k, k) ;
$$

$$
\text { if }(j>k) A(i, j)-=A(i, k) * A(j, k) ;
$$

Observations on code:

- Computations 1 and 3 are MMM. Call BLAS-3 kernel to execute them.
- Computation 4 is a block triangular-solve. Call BLAS-3 kernel to execute it.
- Only unblocked computations are in the small Cholesky factorization.

Critique of this development from compiler perspective:

- How does a compiler where BLAS-3 computations are hiding in complex codes?
- How do we recognize BLAS-3 operations when we expose them?
- How does a compiler synthesize such a complex sequence of transformations?

Compiler approach:

Tile the fully-permutable intermediate form of Cholesky: do \{is,js,ks\} $0<=\mathrm{ks}$ <= js <= is <= N/B -1

$$
\begin{aligned}
& \text { do }\{i, j, k\} \quad B * i s<i<=B * i s+B \\
& B * j s<j<=B * j s+B \\
& B * k s<k<=B * k s+B \\
& \text { if (i == k \&\& } j==k) A(k, k)=\operatorname{sqrt}(A(k, k)) \text {; } \\
& \text { if (i > k \&\& } j==k) A(i, k)=A(i, k) / A(k, k) ; \\
& \text { if (i > k \&\& j > k) A(i,j) -= A(i,k) * A(j,k); }
\end{aligned}
$$

- Loop nest is,js,ks is fully permutable, as is $\mathrm{i}, \mathrm{j}, \mathrm{k}$ loop nest.
- Choose $\mathrm{k}, \mathrm{j}, \mathrm{i}$ order to get good spatial locality.
$\underline{\text { Strategy for locality-enhancement of imperfectly-nested loops: }}$

1. Convert an imperfectly-nested loop into a perfectly-nested intermediate form with guards by code sinking/fusion/etc.
2. Transform intermediate form as before to enhance locality.
3. Convert resulting perfectly-nested loop with guards back into imperfectly-nested loop by index-set splitting/peeling.

How do we make all this work smoothly?

