
�

�

�

�

Transforming Imperfectly Nested Loops

1

�

�

�

�

Classes of loop transformations:
• Iteration re-numbering: (eg) loop interchange

Example

DO 10 J = 1,100 DO 10 I = 1,100

DO 10 I = 1,100 vs DO 10 J = 1,100

Y(I) = Y(I)+A(I,J)*X(J) Y(I) = Y(I) + A(I,J)*X(J)

10 Z(I) = 10 Z(I) =

All statements in body affected identically.
• Statement re-ordering: (eg) loop distribution/jamming

Example

DO 10 I = 1,100 DO 10 I = 1,100

Y(I) = 10 Y(I) = ...

10 Z(I) = ...Y(I)... vs. DO 20 J = 1,100

20 Z(I) = ...Y(I)..

Statement re-ordering can be static or dynamic

2

�

�

�

�

• Statement transformation:
Example: scalar expansion

DO 10 I = 1,100 DO 10 I = 1,100

T = f(I) vs T[I] = f(I)

10 X(I,J) = T*T 10 X(I,J) = T[I]*T[I]

Statements themselves are altered.

3

�

�

�

�

Iteration renumbering transformations

We have already studied linear loop transformations.

Index set splitting: N → N1 + N2

DO 10 I = 1, N DO 10 I = 1, N1

10 S 10 S

vs

DO 20 I = N1+1, N

10 S

Special case: loop peeling - only the first/last/both first and last
iterations are done separately from main loop.

Legality: always legal

4

�

�

�

�

Typical use: Eliminate a ‘problem iteration’

DO 10 I = 1, N

10 X(aI + b) = X(c) + vs

Weak SIV subscript: dependence equation is aIw + b = c

⇒ Iw = (c − b)/a

Split index set of loop into 3 parts:
- DO-ALL loop that does all iterations before Iw

- Iteration Iw by itself
- DO-ALL loop that does all iterations after Iw

Iw DO-ALL DO-ALL

Original Loop After Index-set Splitting

Note: distance/direction are not adequate abstractions

5

�

�

�

�

Strip-mining: N = N1 ∗ N2

DO 10 I = 1, N DO 10 Is = 1, N, s

10 Y(I) = X(I)+1 => DO 10 I = Is, min(Is + s - 1, N)

10 Y(I) = X(I) + 1

Original Loop

I

Is

I

Stripmined Loop: strip size = 2

Inner loop does ‘s’ iterations at a time.
Important transformation for vector machines:
‘s’ = vector register length
Strip-mining is always legal.

6

�

�

�

�

To get clean bounds for inner loop, do last ‘N mod s’ iterations
separately: index-set splitting

DO 10 Is = 1, N, s

DO 10 I = Is, min(Is + s - 1, N)

10 Y(I) = X(I) + 1

=>

DO 10 Is = 1, s*(N div s)

DO 10 I = Is, Is + s - 1

10 Y(I) = X(I) + 1

DO 20 I = (N div s)*s + 1 to N

20 Y(I) = X(I) + 1

7

�

�

�

�

Tiling: multi-dimensional strip-mining N1XN2 = t1 ∗ t2 ∗ N3 ∗ N4

I

J

DO I = ... DO Ti = ...

DO J = ... => DO Tj = ...

S DO I = ...

DO J = ...

S

Old names for tiling: stripmine and interchange, loop quantization

8

�

�

�

�

Statement Sinking: useful for converting some imperfectly-nested
loops into perfectly-nested ones

do k = 1, N

A(k,k) = sqrt (A(k,k))

do i = k+1, N

A(i,k) = A(i,k) / A(k,k) <---- sink into inner loop

do j = k+1, i

A(i,j) -= A(i,k) * A(j,k)

=>

do k = 1, N

A(k,k) = sqrt (A(k,k))

do i = k+1, N

do j = k, i

if (j==k) A(i,k) = A(i,k) / A(k,k)

if (j!=k) A(i,j) -= A(i,k) * A(j,k)

9

�

�

�

�

Basic idea of statement sinking:

1. Execute a pre/post-iteration of loop in which only sunk
statement is executed.

2. Requires insertion of guards for all statements in new loop.

Singly-nested loop (SNL): imperfectly-nested loop in which each
loop has only one other loop nested immediately within it.

Locality enhancement of SNL’s in MIPSPro compiler:

• convert to perfectly-nested loop by statement sinking,
• locality-enhance perfectly-nested loop, and
• convert back to imperfectly-nested loop in code generation.

10

�

�

�

�

Statement Reordering Transformations

loop jamming/fusion <=> loop distribution/fission

Example

DO 10 I = 1,100 DO 10 I = 1,100

Y(I) = 10 Y(I) = ...

10 Z(I) = ...Y(I)... vs. DO 20 J = 1,100

20 Z(I) = ...Y(I)..

Utility of distribution: Can produce parallel loops as below

DO 10 I = 1, 100 DOALL 10 I = 1,100

Y(I) = vs. 10 Y(I) =

10 Z(I) = Y(I-1).... DOALL 20 I’ = 1,100

20 Z(I’) = Y(I’-1)

Loop fusion: promote reuse, eliminate array temporaries

11

�

�

�

�

loop1

loop2

loop3

Acyclic Condensate

1
1

0

0

Statement Dependence

 Graph

DO I = 1,N
 B(I) = C(I-1)*X +1
 C(I) = 1/B(I)

DO I = 1,N
 A(I) = A(I)+B(I-1)
DO I = 1,N
 D(I) = sqrt(C(I))

Legality of loop fission: build the statement dependence graph

DO I = 1,N
 A(I) = A(I) + B(I-1)

 C(I) = 1/B(I)
 D(I) = sqrt(C(I))

Program

- Build the statement dependence graph:

- Each node in acyclic condensate can become one loop nest

- Find the acyclic condensate of statement dependence graph

nodes: assignment statements/if-then-else’s
edges: dependences between statements (distance/direction is irrelevant)

 B(I) = C(I-1)*X + 1

New Code

- Nested loop fission: do in inside-out order, treating inner loop nests as black boxes

- Order of new loop nests: any topological sort of condensate

12

�

�

�

�

< <

< <

Legality of loop fusion:

DO I = 1,N
 X(I) =

DO J = 1,N
 Y(J) = X(J+1)

I

J

DO I = 1,N
 X(I) =
 Y(I) = X(I+1)

illegal

Usually, we do not compute dependences across different loop nests.

Easy to compute though:

Flow dependence: test for fusion preventing dependence

Iw = Jr + 1

Jr < Iw

1 Iw N

1 NJr

Loop fusion is legal if

 (i) loop bounds are identical

 (ii) loops are adjacent

(iii) no fusion-preventing dependence

13

�

�

�

�

Statement transformation:
Example: scalar expansion

DO 10 I = 1,100 DO 10 I = 1,100

T = f(I) vs T[I] = f(I)

10 X(I,J) = T*T 10 X(I,J) = T[I]*T[I]

Anti- and output-dependences (resource dependences)arise from
”storage reuse” in imperative languages (cf. functional languages).

Eliminating resource dependences: eliminate storage reuse.

Standard transformations: scalar/array expansion (shown above)

14

�

�

�

�

We got into perfectly-nested loop transformations by studying the
effect of interchange and tiling on key kernels like matrix-vector
product and matrix-matrix multiplication.

Let us study how imperfectly-nested loop transformations can be
applied to other key routines to get a feel for the issues in applying
these transformations.

15

�

�

�

�

Cholesky factorization from a numerical analyst’s viewpoint:

• used to solve a system of linear equations Ax = b

• A must be symmetric positive-definite

• compute L such that L ∗ LT = A, overwriting lower-triangular
part of A with L

• obtain x be solving two triangular systems

16

�

�

�

�

Cholesky factorization from a compiler writer’s viewpoint:

• Cholesky factorization has 6 loops like MMM, but loops are
imperfectly-nested.

• All 6 permutations of these loops are legal.

• Variations of these 6 basic versions can be generated by
transformations like loop distribution.

17

�

�

�

�

Column Cholesky: kij, right-looking versions

k

update

scale

A

square-root

do k = 1, N

A(k,k) = sqrt (A(k,k)) //square root statement

do i = k+1, N

A(i,k) = A(i,k) / A(k,k) //scale statement

do i = k+1, N

do j = k+1, i

A(i,j) -= A(i,k) * A(j,k) //update statement

• Three assignment statements are called square root, scale and

update statements.

• Compute columns of L column-by-column (indexed by k).

• Eagerly update portion of matrix to right of current column.

• Note: most data references and computations in update.

18

�

�

�

�

Interchanging i and j loops in kij version gives kji version.

Update is performed row by row.

do k = 1, N

A(k,k) = sqrt (A(k,k))

do i = k+1, N

A(i,k) = A(i,k) / A(k,k)

do j = k+1, N

do i = j, N

A(i,j) -= A(i,k) * A(j,k)

19

�

�

�

�

Fusion of the two i loops in kij version produces a SNL.

do k = 1, N

A(k,k) = sqrt (A(k,k))

do i = k+1, N

A(i,k) = A(i,k) / A(k,k)

do j = k+1, i

A(i,j) -= A(i,k) * A(j,k)

20

�

�

�

�

Column Cholesky: jik left-looking versions

j

A

square-root

update

scale

do j = 1, N

do i = j, N //interchange i and k loops for jki version

do k = 1, j-1

A(i,j) -= A(i,k) * A(j,k)

A(j,j) = sqrt (A(j,j))

do i = j+1, N

A(i,j) = A(i,j) / A(j,j)

• Compute columns of L column-by-column.

• Updates to column are done lazily, not eagerly.

• To compute column j, portion of matrix to left of column is used to

update current column.

21

�

�

�

�

Row Cholesky versions

A

j

i

- find inner-product of two blue vectors
- update element x
- scale
- take square-root at endx

for each element in row i

These compute the matrix L row by row. Here is ijk-version of
row Cholesky.

do i = 1, N

do j = 1, i

do k = 1, j-1

A(i,j) -= A(i,k) * A(j,k)

if (j < i) A(i,j) = A(i,j)/A(j,j)

else A(i,i) = sqrt (A(i,i))

22

�

�

�

�

Locality enhancement in Cholesky factorization

• Most of data accesses are in update step.
• Ideal situation: distribute loops to isolate update and tile

update loops.
• Unfortunately, loop distribution is not legal because it requires

delaying all the updates till the end.

23

�

�

�

�

do k = 1, N

A(k,k) = sqrt (A(k,k)) //square root statement

do i = k+1, N

A(i,k) = A(i,k) / A(k,k) //scale statement

do i = k+1, N

do j = k+1, i

A(i,j) -= A(i,k) * A(j,k) //update statement

=> loop distribution (illegal because of dependences)

do k = 1, N

A(k,k) = sqrt (A(k,k)) //square root statement

do i = k+1, N

A(i,k) = A(i,k) / A(k,k) //scale statement

do k = 1, N

do i = k+1, N

do j = k+1, i

A(i,j) -= A(i,k) * A(j,k) //update statement

24

�

�

�

�

After distribution, we could have tiled update statement, and
obtained great performance....

do k = 1, N

do i = k+1, N

do j = k+1, i

A(i,j) -= A(i,k) * A(j,k) //update statement

Dependence vectors:

(A(i,j) -> A(i,j)): (+,0,0)

(A(i,j) -> A(i,k)): (+,0,+)

(A(i,j) -> A(j,k)): (+,0+,+)

25

�

�

�

�

Let us study two distinct approaches to locality enhancement of
Cholesky factorization:

• transformations to extract MMM computations hidden within
Cholesky factorization: improvement of BLAS-3 content

• transformations to permit tiling of imperfectly-nested code

26

�

�

�

�

Key idea used in LAPACK library: ”partial” distribution

A

update block-column

• do processing on block-columns

• do updates to block-columns lazily

• processing of a block-column:

1. apply all delayed updates to current block-column

2. perform square root, scale and local update steps on current

block column

• Key point: applying delayed updates to current block-column can be

performed by calling BLAS-3 matrix-matrix multiplication.

How do we think about this in terms of loop transformations?

27

�

�

�

�

Intermediate representation of Cholesky factorization

Perfectly-nested loop that performs Cholesky factorization:

do k = 1, N

do i = k, N

do j = k, i

if (i == k && j == k) A(k,k) = sqrt (A(k,k));

if (i < k && j == k) A(i,k) = A(i,k) / A(k,k);

if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

Easy to show that

• loop nest is fully permutable, and

• guards are mutually exclusive, so order of statement is irrelevant.

28

�

�

�

�

Generating intermediate form of Cholesky:

Converting kij-Fused version: only requires code sinking.

Converting kji version:

• interchange i and j loops to get kij version,
• apply loop fusion to i loops to get SNL, and
• use code sinking.

Converting other versions: much more challenging....

29

�

�

�

�

Convenient to express loop bounds of fully permutable perfectly
nested loop in the following form:

do {i,j,k} in 1 <= k <= j <= i <= N

if (i == k && j == k) A(k,k) = sqrt (A(k,k));

if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);

if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

30

�

�

�

�

LAPACK-style blocking of intermediate form

��
��
��
��

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

2

4

1

3

block

Computation 1: MMM
Computation 2: unblocked Cholesky
Computation 3: MMM
Computation 4: Triangular solve

column

j

k

i

A

Two levels of blocking:

1. convert to block-column computations to expose BLAS-3
computations

2. use handwritten codes to execute the BLAS-3 kernels

31

�

�

�

�

(1) Stripmine the j loop into blocks of size B:

do js = 0, N/B -1 //js enumerates block columns

do j = B*js +1, B*js+B

do {i,k} in 1 <= k <= j <= i <= N

if (i == k && j == k) A(k,k) = sqrt (A(k,k));

if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);

if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

(2) Interchange the j loop into the innermost position:

do js = 0, N/B -1

do i = B*js +1, N

do k = 1, min(i,B*js+B)

do j = max(B*js +1,k), min(i,B*js+B)

if (i == k && j == k) A(k,k) = sqrt (A(k,k));

if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);

if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

32

�

�

�

�

(3) Index-set split i loop into B*js +1:B*js +B and B*js +B+1:N.
(4) Index-set split k loop into 1:B*js and B*js +1:min(i,B*js+B).

do js = 0, N/B -1

//Computation 1: an MMM

do i= B*js +1, B*js +B

do k = 1,B*js

do j = B*js +1,i

A(i,j) -= A(i,k) * A(j,k);

//Computation 2: a small Cholesky factorization

do i = B*js +1,B*js +B

do k = B*js+1,i

do j = k,i

if (i == k && j == k) A(k,k) = sqrt (A(k,k));

if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);

if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

33

�

�

�

�

//Computation 3: an MMM

do i = B*js+ B+1,N

do k = 1,B*js

do j = B*js+1,B*js+B

A(i,j) -= A(i,k) * A(j,k);

//Computation 4: a triangular solve

do i = B*js+ B+1,N

do k = B*js+1,B*js+B

do j = k,B*js+B

if (j == k) A(i,k) = A(i,k) / A(k,k);

if (j > k) A(i,j) -= A(i,k) * A(j,k);

34

�

�

�

�

Observations on code:

• Computations 1 and 3 are MMM. Call BLAS-3 kernel to
execute them.

• Computation 4 is a block triangular-solve. Call BLAS-3 kernel
to execute it.

• Only unblocked computations are in the small Cholesky
factorization.

35

�

�

�

�

Critique of this development from compiler perspective:

• How does a compiler where BLAS-3 computations are hiding in
complex codes?

• How do we recognize BLAS-3 operations when we expose them?
• How does a compiler synthesize such a complex sequence of

transformations?

36

�

�

�

�

Compiler approach:

Tile the fully-permutable intermediate form of Cholesky:

do {is,js,ks} 0 <= ks <= js <= is <= N/B -1

do {i,j,k} B*is < i <= B*is + B

B*js < j <= B*js + B

B*ks < k <= B*ks + B

if (i == k && j == k) A(k,k) = sqrt (A(k,k));

if (i > k && j == k) A(i,k) = A(i,k) / A(k,k);

if (i > k && j > k) A(i,j) -= A(i,k) * A(j,k);

• Loop nest is,js,ks is fully permutable, as is i,j,k loop nest.

• Choose k,j,i order to get good spatial locality.

37

�

�

�

�

Strategy for locality-enhancement of imperfectly-nested loops:

1. Convert an imperfectly-nested loop into a perfectly-nested
intermediate form with guards by code sinking/fusion/etc.

2. Transform intermediate form as before to enhance locality.
3. Convert resulting perfectly-nested loop with guards back into

imperfectly-nested loop by index-set splitting/peeling.

How do we make all this work smoothly?

38

