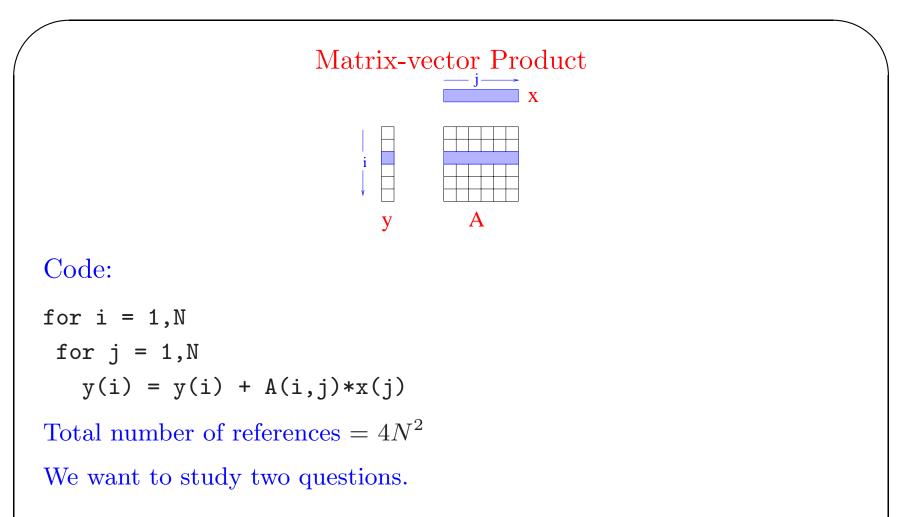
Homework #1:

- http://www.cs.cornell.edu/Courses/cs612/2002SP/ assignments/ps1/ps1.htm
- Due Tuesday, February 14th.

Cache Models and Program Transformations

Goal of this lecture

- We have looked at computational science applications, and isolated key kernels (MVM,MMM,linear system solvers,...).
- We have studied caches and virtual memory, and we understand what causes cache misses (cold, capacity, conflict).
- Let us look at how to make some of the kernels run well on machines with caches.

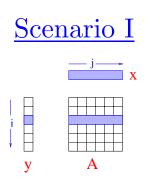


- Can we predict the miss ratio of different variations of this program for different cache models?
- What transformations can we do to improve performance? That is, how do we improve the miss ratio?

Reuse Distance: If r_1 and r_2 are two references to the same cache line in some memory stream, $reuseDistance(r_1, r_2)$ is the number of distinct cache lines referenced between r_1 and r_2 .

Cache model:

- fully associative cache (so no conflict misses)
- LRU replacement strategy
- We will look at two extremes
 - large cache model: no capacity misses
 - small cache model: miss if reuse distance is some function of problem size (size of arrays)



Cache model:

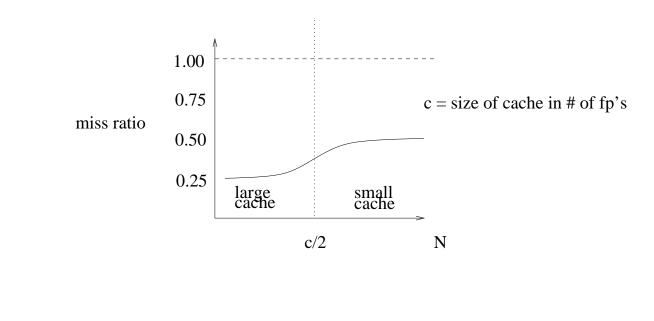
- fully associative cache (no conflict misses)
- LRU replacement strategy
- cache line size = 1 floating-point number

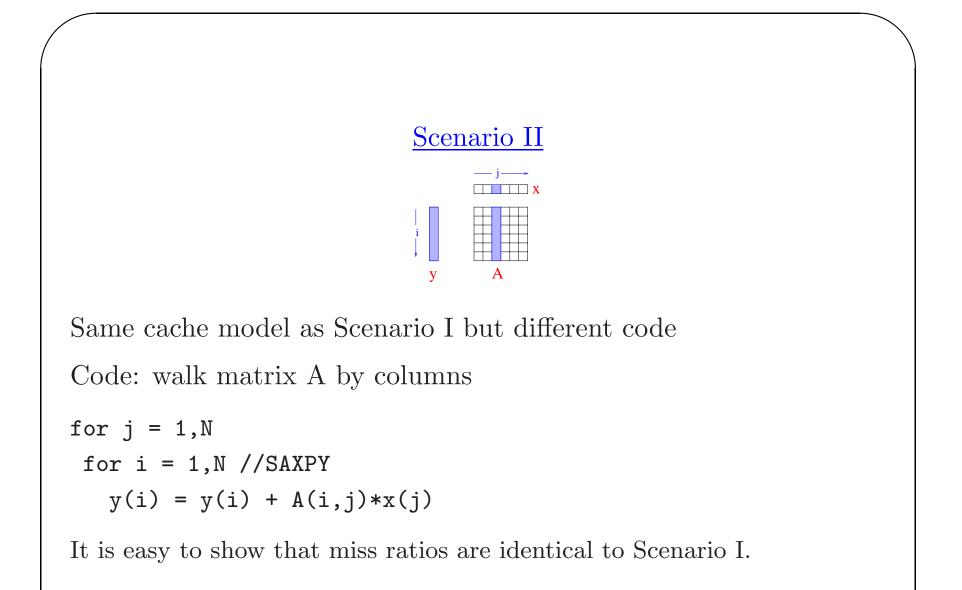
Small cache: assume cache can hold fewer than (2N+1) numbers Misses:

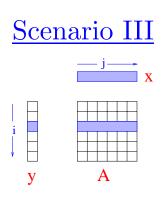
- matrix A: N^2 cold misses
- vector x: N cold misses + N(N-1) capacity misses
- vector y: N cold misses
- Miss ratio = $(2N^2 + N)/4N^2 \rightarrow 0.5$

Large cache model: cache can hold more than (2N+1) numbers Misses:

- matrix $A: N^2$ cold misses
- vector x: N cold misses
- vector y: N cold misses
- Miss ratio = $(N^2 + 2N)/4N^2 \rightarrow 0.25$







Cache model:

- fully associative cache (no conflict misses)
- LRU replacement strategy
- cache line size = b floating-point numbers (can exploit spatial locality)

Code: (original) i-j loop order

```
for i = 1,N
for j = 1,N
y(i) = y(i) + A(i,j)*x(j)
```

Let us assume A is stored in row-major order.

Small cache:

Misses:

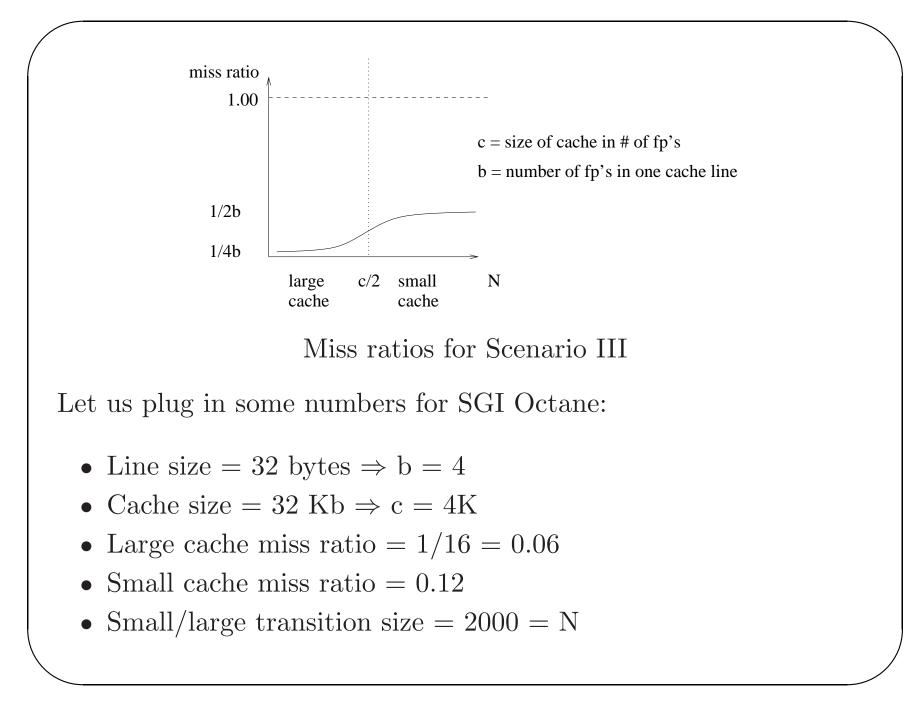
- matrix A: N^2/b cold misses
- vector x: N/b cold misses + N(N-1)/b capacity misses
- vector y: N/b cold misses
- Miss ratio = $(1/2 + 1/4N)^*(1/b) \rightarrow 1/2b$

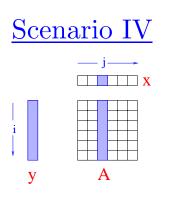
Large cache:

Misses:

- matrix A: N^2/b cold misses
- vector x: N/b cold misses
- vector y: N/b cold misses
- Miss ratio = $(1/4 + 1/2N)^*(1/b) \rightarrow 1/4b$

Transition from small cache to large cache when 2N + b = c.





Cache model:

- fully associative cache (no conflict misses)
- LRU replacement strategy
- cache line size = b floating-point numbers (can exploit spatial locality)

Code: j-i loop order

```
for j = 1,N
for i = 1,N
y(i) = y(i) + A(i,j)*x(j)
```

Note: we are not walking over A in memory layout order

Small cache:

Misses:

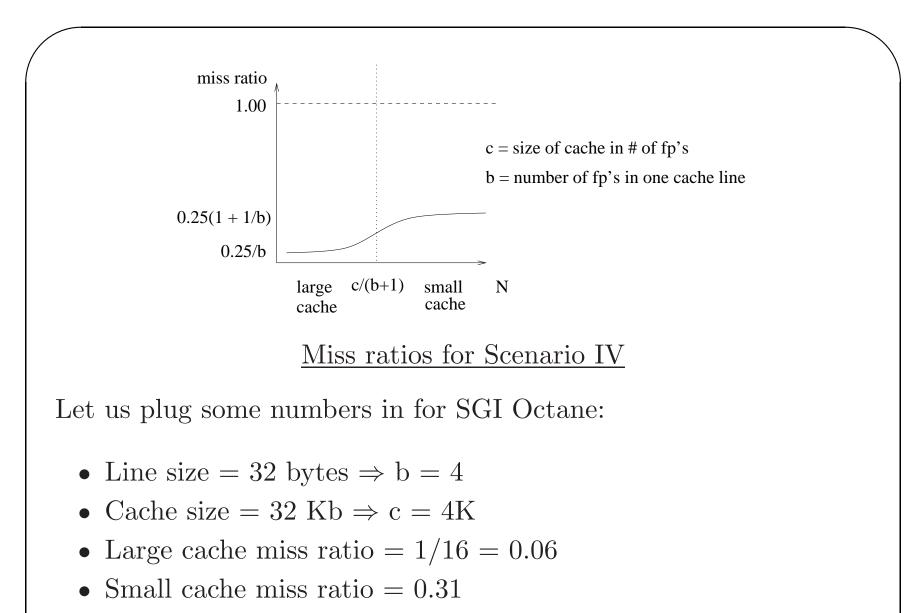
- matrix A: N^2 / cold misses
- vector x: N/b cold misses
- vector y: N/b cold misses + N(N-1)/b capacity misses
- Miss ratio = $0.25^{*}(1+1/b) + 1/4Nb \rightarrow 0.25^{*}(1+1/b)$

Large cache:

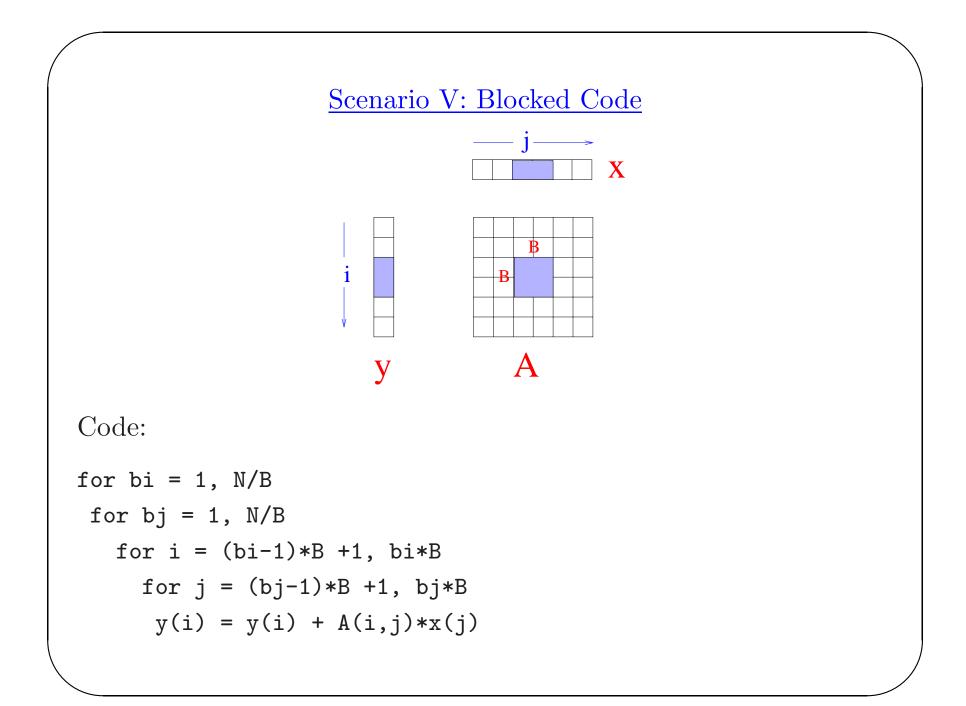
Misses:

- matrix A: N^2/b cold misses
- vector x: N/b cold misses
- vector y: N/b cold misses
- Miss ratio = $(1/4 + 1/2N)^*(1/b) \rightarrow 1/4b$

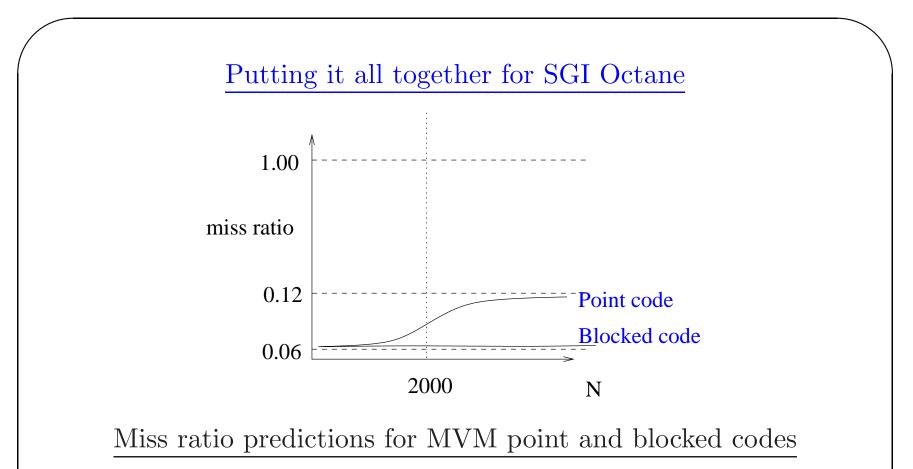
Transition from small cache to large cache when c > bN + N + b



• Small/large transition size = 800

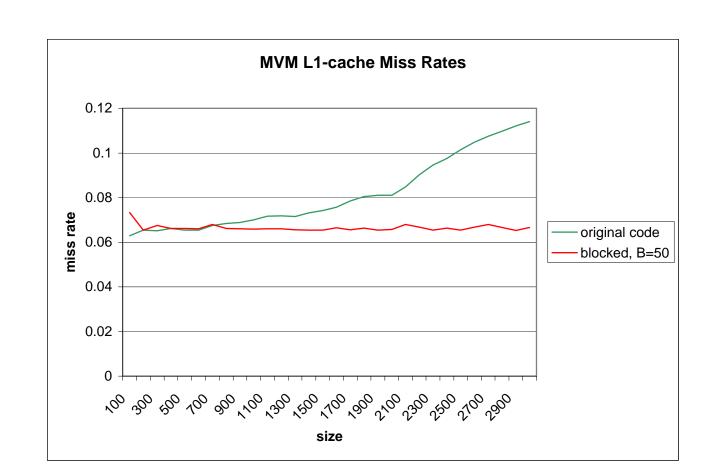


- Pick block size B so that you effectively have large cache model while executing code within block (2B = c).
- Misses within a block:
 - matrix A: B^2/b cold misses
 - vector x: B/b
 - vector y: B/b
- Total number of block computations = $(N/B)^2$
- Miss ratio = $(0.25 + 1/2B)*1/b \rightarrow 0.25/b$
- For Octane, we have miss ratio is roughly 0.06 independent of problem size.



We have assumed a fully associative cache.

Conflict misses will have the effect of reducing effective cache size, so transition from large to small cache model should happen sooner than predicted.

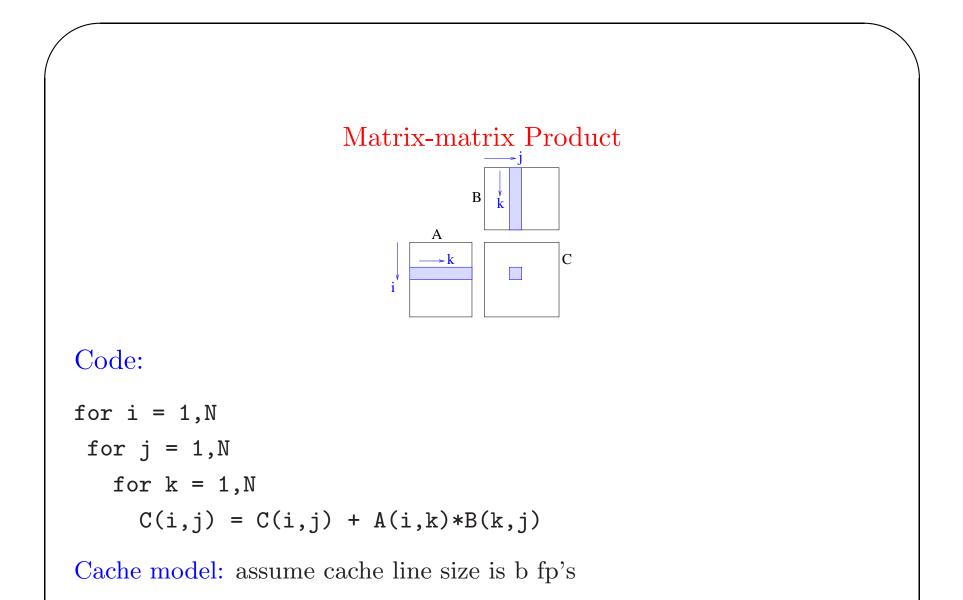


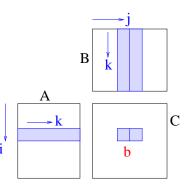
Experimental Results on SGI Octane

Predictions agree reasonably well with experiments.

Key transformations

- Loop permutation
 - for j = 1, N for i = 1, N
 for i = 1, N => for j = 1, N
 y(i) = y(i) + A(i,j)*x(j) y(i) = y(i) + A(i,j)*x(j)
- Loop tiling
 - for i = 1, N
 for j = 1, N
 y(i) = y(i)+A(i,j)*x(j)
 for i = (bi-1)*B +1, bi*B
 for j = (bj-1)*B +1, bj*B
 y(i) = y(i) + A(i,j)*x(j)
- Warning: these transformations may be illegal in some codes.





Small cache:

Misses for each cache line of C:

- matrix A: N/b
- matrix B: b * N
- matrix C: b
- Total number of misses per cache line of C = N(b+1) + b

Total number of misses $= N^2/b * (N(b+1)+1) \rightarrow N^3(b+1)/b$ Total number of references $= 4N^3$ Miss ratio $\rightarrow 0.25(b+1)/b$

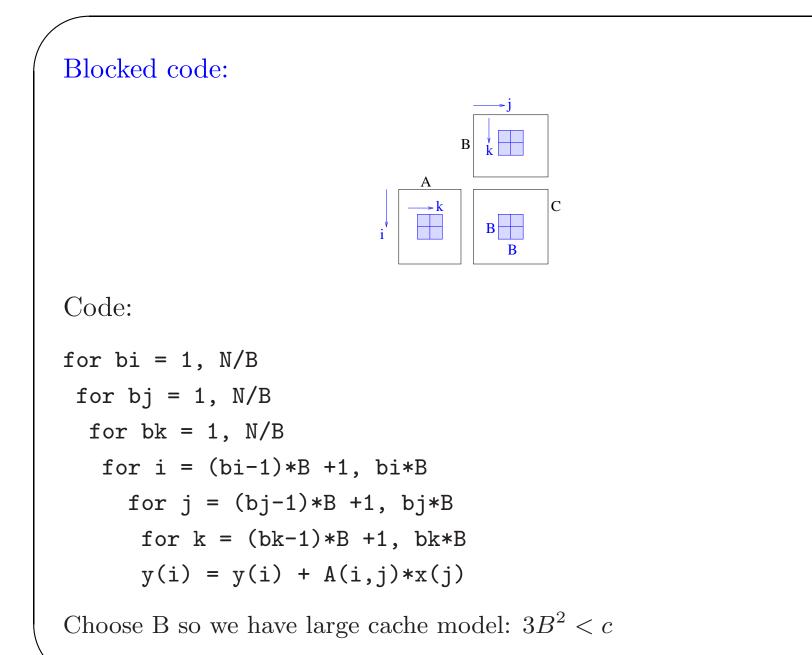
Large cache:

Cold misses $= 3 * N^2/b$

Miss ratio = $3 * N^2/4bN^3 = 0.75/bN$

For large cache model, miss ratio decreases as the size of the problem increases!

Intuition: lot of data reuse, so once matrices all fit into cache, code goes full blast.



Miss ratio of blocked code = 0.75/bB.

Since B < sqrt(c/3), lower bound on miss ratio is 1.3/b * sqrt(c). For Octane, miss ratio > 0.05.

As before, we have ignored conflict misses, so actual miss ratio we can obtain from blocking alone will be more.

Summary

- We have looked at two kernels: MVM and MMM.
- As usually written, these kernels have poor cache performance.
- Blocking can improve cache performance dramatically.
- Distinguishing characteristic of MVM and MMM: perfectly-nested loop nests.

A perfectly-nested loop nest is a loop nest in which all assignment statements are contained in the innermost loop.

- Key compiler transformations for perfectly-nested loops: permutation and tiling.
- Neither transformation is necessarily legal or beneficial.
 - How can a compiler determine legality of a transformation?
 - How does a compiler which transformation to apply?