
cs 152 L1 7 .1 DAP Fa97,  U.CB

CS152: Computer Architecture and Engineering
Caches and Virtual Memory

October 31, 1997

Dave Patterson (http.cs.berkeley.edu/~patterson)

lecture slides: http://www-inst.eecs.berkeley.edu/~cs152/

cs 152 L1 7 .2 DAP Fa97,  U.CB

Recap: Who Cares About the Memory Hierarchy?

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory
Performance Gap:
(grows 50% / year)

P
er

fo
rm

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

cs 152 L1 7 .3 DAP Fa97,  U.CB

Recap: Static RAM Cell

6-Transistor SRAM Cell

bit bit

word
(row select)

bit bit

word

° Write:
1. Drive bit lines (bit=1, bit=0)

2.. Select row

° Read:
1. Precharge bit and bit to Vdd

2.. Select row

3. Cell pulls one line low

4. Sense amp on column detects difference between bit and bit

replaced with pullup
to save area

10

0 1

cs 152 L1 7 .4 DAP Fa97,  U.CB

Recap: 1-Transistor Memory Cell (DRAM)

° Write:
• 1. Drive bit line

• 2.. Select row

° Read:
• 1. Precharge bit line to Vdd

• 2.. Select row

• 3. Cell and bit line share charges

- Very small voltage changes on the bit line

• 4. Sense (fancy sense amp)

- Can detect changes of ~1 million electrons

• 5. Write: restore the value

° Refresh
• 1. Just do a dummy read to every cell.

row select

bit

cs 152 L1 7 .5 DAP Fa97,  U.CB

DRAMs over Time

DRAM Generation

‘84 ‘87 ‘90 ‘93 ‘96 ‘99

1 Mb 4 Mb 16 Mb 64 Mb 256 Mb 1 Gb

55 85 130 200 300 450

30 47 72 110 165 250

28.84 11.1 4.26 1.64 0.61 0.23

(from Kazuhiro Sakashita, Mitsubishi)

1st Gen. Sample

Memory Size

Die Size (mm2)

Memory Area
(mm2)

Memory Cell
Area (µm2)

cs 152 L1 7 .6 DAP Fa97,  U.CB

DRAM v. Desktop Microprocessors Cultures

Standards pinout, package, binary compatibility,
refresh rate, IEEE 754, I/O bus
 capacity, ...

Sources Multiple Single

Figures 1) capacity, 1a) $/bit 1) SPEC speed
of Merit 2) BW, 3) latency 2) cost

Improve 1) 60%, 1a) 25%, 1) 60%,
Rate/year 2) 20%, 3) 7% 2) little change

cs 152 L1 7 .7 DAP Fa97,  U.CB

Recap: Memory Hierarchy of a Modern Computer System

° By taking advantage of the principle of locality:
• Present the user with as much memory as is available in the

cheapest technology.

• Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache
1s 10,000,000s

 (10s ms)
Speed (ns): 10s 100s

100s
Gs

Size (bytes):
Ks Ms

Tertiary
Storage
(Disk)

10,000,000,000s
 (10s sec)

Ts

cs 152 L1 7 .8 DAP Fa97,  U.CB

Recap:

° Two Different Types of Locality:
• Temporal Locality (Locality in Time): If an item is referenced, it will

tend to be referenced again soon.

• Spatial Locality (Locality in Space): If an item is referenced, items
whose addresses are close by tend to be referenced soon.

° By taking advantage of the principle of locality:
• Present the user with as much memory as is available in the

cheapest technology.

• Provide access at the speed offered by the fastest technology.

° DRAM is slow but cheap and dense:
• Good choice for presenting the user with a BIG memory system

° SRAM is fast but expensive and not very dense:
• Good choice for providing the user FAST access time.

cs 152 L1 7 .9 DAP Fa97,  U.CB

° The Five Classic Components of a Computer

° Today’s Topics:
• Recap last lecture

• Cache Review

• Administrivia

• Advanced Cache

• Virtual Memory

• Protection

• TLB

The Big Picture: Where are We Now?

Control

Datapath

Memory

Processor

Input

Output

cs 152 L1 7 .10 DAP Fa97,  U.CB

The Art of Memory System Design

Processor

$

MEM

Memory

reference stream
<op,addr>, <op,addr>,<op,addr>,<op,addr>, . . .

op: i-fetch, read, write

Optimize the memory system organization
to minimize the average memory access time
for typical workloads

Workload or
Benchmark
programs

cs 152 L1 7 .11 DAP Fa97,  U.CB

Example: 1 KB Direct Mapped Cache with 32 B Blocks

° For a 2 ** N byte cache:
• The uppermost (32 - N) bits are always the Cache Tag

• The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9

cs 152 L1 7 .12 DAP Fa97,  U.CB

Block Size Tradeoff

° In general, larger block size take advantage of spatial
locality BUT:

• Larger block size means larger miss penalty:

- Takes longer time to fill up the block

• If block size is too big relative to cache size, miss rate will go up

- Too few cache blocks

° In gerneral, Average Access Time:
• = Hit Time x (1 - Miss Rate) + Miss Penalty x Miss Rate

Miss
Penalty

Block Size

Miss
Rate Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Average
Access

Time

Increased Miss Penalty
& Miss Rate

Block Size Block Size

cs 152 L1 7 .13 DAP Fa97,  U.CB

Extreme Example: single big line

° Cache Size = 4 bytes Block Size = 4
bytes

• Only ONE entry in the cache

° If an item is accessed, likely that it will be accessed
again soon

• But it is unlikely that it will be accessed again immediately!!!

• The next access will likely to be a miss again

- Continually loading data into the cache but
discard (force out) them before they are used again

- Worst nightmare of a cache designer: Ping Pong Effect

° Conflict Misses are misses caused by:
• Different memory locations mapped to the same cache index

- Solution 1: make the cache size bigger

- Solution 2: Multiple entries for the same Cache Index

0

 Cache DataValid Bit

Byte 0Byte 1Byte 3

 Cache Tag

Byte 2

cs 152 L1 7 .14 DAP Fa97,  U.CB

Another Extreme Example: Fully Associative

° Fully Associative Cache
• Forget about the Cache Index

• Compare the Cache Tags of all cache entries in parallel

• Example: Block Size = 2 B blocks, we need N 27-bit comparators

° By definition: Conflict Miss = 0 for a fully associative
cache

:

 Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

 Cache Tag

Byte Select

Ex: 0x01

X

X

X

X

X

cs 152 L1 7 .15 DAP Fa97,  U.CB

A Two-way Set Associative Cache

° N-way set associative: N entries for each Cache Index
• N direct mapped caches operates in parallel

° Example: Two-way set associative cache
• Cache Index selects a “set” from the cache

• The two tags in the set are compared in parallel

• Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cs 152 L1 7 .16 DAP Fa97,  U.CB

Disadvantage of Set Associative Cache

° N-way Set Associative Cache versus Direct Mapped
Cache:

• N comparators vs. 1
• Extra MUX delay for the data
• Data comes AFTER Hit/Miss decision and set selection

° In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

• Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cs 152 L1 7 .17 DAP Fa97,  U.CB

A Summary on Sources of Cache Misses

° Compulsory (cold start or process migration, first
reference): first access to a block

• “Cold” fact of life: not a whole lot you can do about it

• Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

° Conflict (collision):
• Multiple memory locations mapped

to the same cache location

• Solution 1: increase cache size

• Solution 2: increase associativity

° Capacity:
• Cache cannot contain all blocks access by the program

• Solution: increase cache size

° Invalidation: other process (e.g., I/O) updates
memory

cs 152 L1 7 .18 DAP Fa97,  U.CB

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss:

Cache Size:
Small, Medium, Big?

Capacity Miss

Invalidation Miss

Conflict Miss

Source of Cache Misses Quiz

Choices: Zero, Low, Medium, High, Same

cs 152 L1 7 .19 DAP Fa97,  U.CB

Administrative Issues

°New Office Hours:
• Gebis: Tue, 3:30-4:30, Kirby: Wed 1-2, Kozyrakis: Mon 1pm-2pm,

Th 11am-noon ,Patterson: Wed 1-2 and Wed 3:30-4:30

° Reflector site for handouts and lecture notes (backup):
• http://HTTP.CS.Berkeley.EDU/~patterson/152F97/index_handouts.html

• http://HTTP.CS.Berkeley.EDU/~patterson/152F97/index_lectures.html

° Read: Chapter 7 of COD 2/e; how many taken CS162?

° Upcoming events in CS152:
• Wed 11/5 Intro to I/O Systems Brian Wong, Sun

• Fri 11/7 Advanced I/O Systems Brian Wong, Sun

• Wed 11/12 Intro Digital Signal Processor (DSP) Prof. Brodersen

• Fri 11/14 Advanced DSP Jeff Bier, BDTI

• Sun 11/16 Miterm Review 1-3PM 306 Soda TAs

• Wed 11/19 Midterm II 5:30-8:30 306 Soda; >8:30 - pizza@La Val’s

• Fri 11/21 Field Trip to Intel (leave 9AM, Return 5PM)

cs 152 L1 7 .20 DAP Fa97,  U.CB

Sources of Cache Misses Answer

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Invalidation Miss

Big Medium Small

Note:
If you are going to run “billions” of instruction, Compulsory Misses are insignificant.

Same Same Same

Conflict Miss High Medium Zero

Low Medium High

Same Same Same

cs 152 L1 7 .21 DAP Fa97,  U.CB

How Do you Design a Cache?

° Set of Operations that must be supported
• read: data <= Mem[Physical Address]

• write: Mem[Physical Address] <= Data

° Deterimine the internal register transfers

° Design the Datapath

° Design the Cache Controller

Physical Address

Read/Write

Data

Memory
“Black Box”

Inside it has:
Tag-Data Storage,
Muxes,
Comparators, . . .

Cache
Controller

Cache
DataPathAddress

Data In

Data Out

R/W
Active

Control
Points

Signals
wait

cs 152 L1 7 .22 DAP Fa97,  U.CB

1 KB Direct Mapped Cache, 32B blocks

° For a 2 ** N byte cache:
• The uppermost (32 - N) bits are always the Cache Tag

• The lowest M bits are the Byte Select (Block Size = 2 ** M)

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9

cs 152 L1 7 .23 DAP Fa97,  U.CB

Two-way Set Associative Cache

° N-way set associative: N entries for each Cache Index
• N direct mapped caches operates in parallel

° Example: Two-way set associative cache
• Cache Index selects a “set” from the cache

• The two tags in the set are compared in parallel

• Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cs 152 L1 7 .24 DAP Fa97,  U.CB

Disadvantage of Set Associative Cache

° N-way Set Associative Cache v. Direct Mapped Cache:
• N comparators vs. 1

• Extra MUX delay for the data

• Data comes AFTER Hit/Miss

° In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:

• Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

cs 152 L1 7 .25 DAP Fa97,  U.CB

Impact on Cycle Time

Example: direct map allows miss signal after data

IR

PC
I -Cache

D Cache

A B

R

T

IRex

IRm

IRwb

miss

invalid

Miss

Cache Hit Time:
directly tied to clock rate
increases with cache size
increases with associativity

Average Memory Access time =
Hit Time + Miss Rate x Miss Penalty

Time = IC x CT x (ideal CPI + memory stalls)

cs 152 L1 7 .26 DAP Fa97,  U.CB

Improving Cache Performance: 3 general options

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

cs 152 L1 7 .27 DAP Fa97,  U.CB

4 Questions for Memory Hierarchy

° Q1: Where can a block be placed in the upper
level? (Block placement)

° Q2: How is a block found if it is in the upper level?
 (Block identification)

° Q3: Which block should be replaced on a miss?
(Block replacement)

° Q4: What happens on a write?
(Write strategy)

cs 152 L1 7 .28 DAP Fa97,  U.CB

Q1: Where can a block be placed in the upper level?

° Block 12 placed in 8 block cache:
• Fully associative, direct mapped, 2-way set associative

• S.A. Mapping = Block Number Modulo Number Sets

cs 152 L1 7 .29 DAP Fa97,  U.CB

Q2: How is a block found if it is in the upper level?
° Tag on each block

• No need to check index or block offset

° Increasing associativity shrinks index, expands tag

cs 152 L1 7 .30 DAP Fa97,  U.CB

Q3: Which block should be replaced on a miss?

° Easy for Direct Mapped

° Set Associative or Fully Associative:
• Random

• LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way

Size LRURandomLRURandom LRURandom

16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17%1.13% 1.13% 1.12% 1.12%

cs 152 L1 7 .31 DAP Fa97,  U.CB

Q4: What happens on a write?

° Write through—The information is written to both
the block in the cache and to the block in the lower-
level memory.

° Write back—The information is written only to the
block in the cache. The modified cache block is
written to main memory only when it is replaced.

• is block clean or dirty?

° Pros and Cons of each?
• WT: read misses cannot result in writes

• WB: no writes of repeated writes

° WT always combined with write buffers so that
don’t wait for lower level memory

cs 152 L1 7 .32 DAP Fa97,  U.CB

Write Buffer for Write Through

° A Write Buffer is needed between the Cache and
Memory

• Processor: writes data into the cache and the write buffer

• Memory controller: write contents of the buffer to memory

° Write buffer is just a FIFO:
• Typical number of entries: 4

• Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write cycle

° Memory system designer’s nightmare:
• Store frequency (w.r.t. time) -> 1 / DRAM write cycle

• Write buffer saturation

Processor
Cache

Write Buffer

DRAM

cs 152 L1 7 .33 DAP Fa97,  U.CB

Write Buffer Saturation

° Store frequency (w.r.t. time) -> 1 / DRAM write cycle
• If this condition exist for a long period of time (CPU cycle time too

quick and/or too many store instructions in a row):

- Store buffer will overflow no matter how big you make it

- The CPU Cycle Time <= DRAM Write Cycle Time

° Solution for write buffer saturation:
• Use a write back cache

• Install a second level (L2) cache:

Processor
Cache

Write Buffer

DRAM

Processor
Cache

Write Buffer

DRAML2
Cache

cs 152 L1 7 .34 DAP Fa97,  U.CB

Write-miss Policy: Write Allocate versus Not Allocate

° Assume: a 16-bit write to memory location 0x0 and
causes a miss

• Do we read in the block?

- Yes: Write Allocate

- No: Write Not Allocate

Cache Index

0

1

2

3

:

 Cache Data

Byte 0

0431

:

Cache Tag Example: 0x00

Ex: 0x00

0x00

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

 Cache Tag

Byte Select

Ex: 0x00

9

cs 152 L1 7 .35 DAP Fa97,  U.CB

Impact of Memory Hierarchy on Algorithms

° Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

° “The Influence of Caches on the Performance of
Sorting” by A. LaMarca and R.E. Ladner. Proceedings
of the Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, January, 1997, 370-379.

° Quicksort: fastest comparison based sorting
algorithm when all keys fit in memory

° Radix sort: also called “linear time” sort because for
keys of fixed length and fixed radix a constant number
of passes over the data is sufficient independent of
the number of keys

° For Alphastation 250, 32 byte blocks, direct mapped
L2 2MB cache, 8 byte keys, from 4000 to 4000000

cs 152 L1 7 .36 DAP Fa97,  U.CB

Quicksort vs. Radix as vary number keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Set size in keys

Instructions/key

Radix sort

Quick
sort

cs 152 L1 7 .37 DAP Fa97,  U.CB

Quicksort vs. Radix as vary number keys: Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

Time

Set size in keys

Instructions

Radix sort

Quick
sort

cs 152 L1 7 .38 DAP Fa97,  U.CB

Quicksort vs. Radix as vary number keys: Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

Cache misses

Set size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?

cs 152 L1 7 .39 DAP Fa97,  U.CB

Recall: Levels of the Memory Hierarchy

CPU Registers
100s Bytes
<10s ns

Cache
K Bytes
10-100 ns
$.01-.001/bit

Main Memory
M Bytes
100ns-1us
$.01-.001

Disk
G Bytes
ms
10 - 10 cents-3 -4

Capacity
Access Time
Cost

Tape
infinite
sec-min
10-6

Registers

Cache

Memory

Disk

Tape

Instr. Operands

Blocks

Pages

Files

Staging
Xfer Unit

prog./compiler
1-8 bytes

cache cntl
8-128 bytes

OS
512-4K bytes

user/operator
Mbytes

Upper Level

Lower Level

faster

Larger

°

°

cs 152 L1 7 .40 DAP Fa97,  U.CB

Basic Issues in Virtual Memory System Design

size of information blocks that are transferred from
 secondary to main storage (M)

block of information brought into M, and M is full, then some region
 of M must be released to make room for the new block -->
 replacement policy

which region of M is to hold the new block --> placement policy

missing item fetched from secondary memory only on the occurrence
 of a fault --> demand load policy

Paging Organization

virtual and physical address space partitioned into blocks of equal size
page frames

pages

pages
reg

cache
mem disk

frame

cs 152 L1 7 .41 DAP Fa97,  U.CB

Address Map

V = {0, 1, . . . , n - 1} virtual address space
M = {0, 1, . . . , m - 1} physical address space

MAP: V --> M U {0} address mapping function

n > m

MAP(a) = a' if data at virtual address a is present in physical
 address a' and a' in M

 = 0 if data at virtual address a is not present in M

Processor

Name Space V

Addr Trans
Mechanism

fault
handler

Main
Memory

Secondary
Memory

a

a
a'

0

missing item fault

physical address OS performs
this transfer

cs 152 L1 7 .42 DAP Fa97,  U.CB

Paging Organization

frame 0
1

7

0
1024

7168

P.A.

Physical
Memory

1K
1K

1K

Addr
Trans
MAP

page 0
1

31

1K
1K

1K

0
1024

31744

unit of
mapping

also unit of
transfer from
virtual to
physical
memory

Virtual Memory

Address Mapping

VA page no. disp
10

Page Table

index
into
page
table

Page Table
Base Reg

V Access
Rights PA +

table located
in physical
memory

physical
memory
address

actually, concatenation
is more likely

V.A.

cs 152 L1 7 .43 DAP Fa97,  U.CB

Virtual Address and a Cache

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

It takes an extra memory access to translate VA to PA

This makes cache access very expensive, and this is the "innermost
 loop" that you want to go as fast as possible

ASIDE: Why access cache with PA at all? VA caches have a problem!
 synonym / alias problem: two different virtual addresses map to same
 physical address => two different cache entries holding data for
 the same physical address!

 for update: must update all cache entries with same
 physical address or memory becomes inconsistent

 determining this requires significant hardware, essentially an
 associative lookup on the physical address tags to see if you
 have multiple hits; or

 software enforced alias boundary: same lsb of VA &PA > cache size

cs 152 L1 7 .44 DAP Fa97,  U.CB

TLBs

A way to speed up translation is to use a special cache of recently
 used page table entries -- this has many names, but the most
 frequently used is Translation Lookaside Buffer or TLB

Virtual Address Physical Address Dirty Ref Valid Access

TLB access time comparable to cache access time
 (much less than main memory access time)

cs 152 L1 7 .45 DAP Fa97,  U.CB

Translation Look-Aside Buffers

Just like any other cache, the TLB can be organized as fully associative,
 set associative, or direct mapped

TLBs are usually small, typically not more than 128 - 256 entries even on
 high end machines. This permits fully associative
 lookup on these machines. Most mid-range machines use small
 n-way set associative organizations.

CPU
TLB

Lookup
Cache Main

Memory

VA PA miss

hit

data

Trans-
lation

hit

miss

20 tt1/2 t

Translation
with a TLB

cs 152 L1 7 .46 DAP Fa97,  U.CB

Reducing Translation Time

Machines with TLBs go one step further to reduce #
cycles/cache access

They overlap the cache access with the TLB access

Works because high order bits of the VA are used to
look in the TLB

 while low order bits are used as index into cache

cs 152 L1 7 .47 DAP Fa97,  U.CB

Overlapped Cache & TLB Access

TLB Cache

10 2

00

4 bytes

index 1 K

page # disp
20 12

assoc
lookup32

PA Hit/
Miss PA Data Hit/

Miss

=

IF cache hit AND (cache tag = PA) then deliver data to CPU
ELSE IF [cache miss OR (cache tag = PA)] and TLB hit THEN
 access memory with the PA from the TLB
ELSE do standard VA translation

cs 152 L1 7 .48 DAP Fa97,  U.CB

Problems With Overlapped TLB Access

Overlapped access only works as long as the address bits used to
 index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
 n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
 increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
 go to 8K byte page sizes;
 go to 2 way set associative cache; or
 SW guarantee VA[13]=PA[13]

1K

4 4
10

2 way set assoc cache

cs 152 L1 7 .49 DAP Fa97,  U.CB

Summary #1/ 4:

° The Principle of Locality:
• Program likely to access a relatively small portion of the address

space at any instant of time.

- Temporal Locality: Locality in Time

- Spatial Locality: Locality in Space

° Three Major Categories of Cache Misses:
• Compulsory Misses: sad facts of life. Example: cold start misses.

• Conflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!

• Capacity Misses: increase cache size

° Cache Design Space
• total size, block size, associativity

• replacement policy

• write-hit policy (write-through, write-back)

• write-miss policy

cs 152 L1 7 .50 DAP Fa97,  U.CB

Summary #2 / 4: The Cache Design Space

° Several interacting dimensions
• cache size

• block size

• associativity

• replacement policy

• write-through vs write-back

• write allocation

° The optimal choice is a compromise
• depends on access characteristics

- workload

- use (I-cache, D-cache, TLB)

• depends on technology / cost

° Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

cs 152 L1 7 .51 DAP Fa97,  U.CB

Summary #3 / 4 : TLB, Virtual Memory

° Caches, TLBs, Virtual Memory all understood by
examining how they deal with 4 questions: 1) Where
can block be placed? 2) How is block found? 3) What
block is repalced on miss? 4) How are writes
handled?

° Page tables map virtual address to physical address

° TLBs are important for fast translation

° TLB misses are significant in processor performance:
(funny times, as most systems can’t access all of 2nd
level cache without TLB misses!)

cs 152 L1 7 .52 DAP Fa97,  U.CB

Summary #4 / 4: Memory Hierachy

° VIrtual memory was controversial at the time:
can SW automatically manage 64KB across many
programs?

• 1000X DRAM growth removed the controversy

° Today VM allows many processes to share single
memory without having to swap all processes to disk;
VM protection is more important than memory
hierarchy

° Today CPU time is a function of (ops, cache misses)
vs. just f(ops):
What does this mean to Compilers, Data structures,
Algorithms?

