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CS 612

Software Systems for High-performance Architectures
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Course Organization

• Lecturer:Paul Stodghill, stodghil@cs.cornell.edu, Rhodes 496

• TA: Rohit Fernandes, rohitf@cs.cornell.edu, Rhodes 490

• URL: http://www.cs.cornell.edu/Courses/cs612/2002SP/

• Prerequisites: Experience in writing moderate-sized (about
2000 lines) programs, and interest in software for
high-performance computers. CS 412 is desirable but not
essential.

• Lectures: two per week

• Course-work: Four or five assignments which will involve
programming on work-stations, and a substantial final project.
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Resources

• Books (Recommended, not required)

• “Advanced Compiler Design and Implementation”, Steve

Muchnick, Morgan Kaufmann Publishers.

• “Introduction to Parallel Computing”, Vipin Kumar et al,

Benjamin/Cummings Publishers.

• “Computer Architecture: A Quantitative Approach”, Hennessy

and Patterson, Morgan Kaufmann Publishers.

• Conferences

• “ACM Symposium on Principles and Practice of Parallel

Programming”

• “ACM SIGPLAN Symposium on Programming Language Design

and Implementation”

• “International Conference on Supercomputing”

• “Supercomputing”
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Objective

− some emphasis on applications and architecture

− primary emphasis on restructuring compilers,
    parallel languages (HPF), and libraries (OpenMP, MPI).

We will study software systems that permit applications programs
to exploit the power of modern high−performance computers.

Computational 
Science

Database
Systems

Software Systems

High−performance

Work−stations

Shared−memory
Multiprocessors

Distributed−memory

Multiprocessors

SGI Octane, DEC Alpha SGI Origin 2000, CRAY T3E

??

IBM SP, AC3 Velocity
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Conventional Software Environment

• Languages: FORTRAN,C/C++, Java
• Compiler: GNU (Dragon-book optimizations)
• O/S: UNIX, Win32

This software environment is not adequate for modern
high-performance computers.

To understand this, let us look at some high-performance
computers.
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The HP/CONVEX Exemplar: A Shared−Memory MultiProcessor

Hypernode Interconnect 

Interface

: Hypernode

Hypernode Network of hypernodes

CPU

Agent

CPU

Agent

Cache

Memory

Cache

Memory Memory
Private

Global

Memory

Network
Cache

PA−RISC

Parallelism:

Processor cache      10 ns
CPU private memory  500 ns
Hypernode private memory 500 ns
Network cache  500 ns
Interhypernode shared memory  2 microsec

Memory latencies:

Across hypernodes: NUMA 

Within hypernode: SMP
(Symmetric MultiProcessor)

(Non−uniform Memory Access machine)

Coarse−grain parallelism: processors operate in parallel
Instruction−level parallelism: each processor is pipelined

Locality of reference is extremely important

Programming model: C/FORTRAN + OpenMP
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Distributed-memory computers: each processor has a different
address space (eg. IBM SP-2)

Programming model: C/FORTRAN + MPI
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The AC3 Cluster: network of SMP nodes

Fast Bus

Interface

CPU

Agent

CPU

Agent

Cache Cache Memory

Pentium III

Giganet Interconnect
64 nodes............. .............

- Each node is a 4-way SMP with Pentium III processors
- 64 nodes are connected by a Giganet interconnect
- Within each node, we have a shared-memory multiprocessor
- Across nodes, we have a distributed-memory multiprocessor

=> Programming such a hybrid machine is even more complex!
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Pipelined processors: must exploit instruction-level parallelism

Instruction
     fetch

Branches

Floating-point pipeline

Integer pipeline

Branch
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Lessons for software

To obtain good performance on such high-performance computers,
an application program must

• exploit coarse-grain parallelism

• exploit instruction level parallelism

• exploit temporal and spatial locality of reference

Let us study how this is done, and understand why it is so hard to
worry about both parallelism and locality simultaneously.
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do j = 1..N
  do i = 1..N
    Y[i] = Y[i] + A[i,j]*X[j]

 

y A x

=

do i = 1 ..Ndo i = 1 ..N
  x(2*i + 1) = ...x(2*i) ....  x(i+1) = ....x(i) ....

One of these loops is parallel, the other is sequential!

Each row of the matrix can be multiplied by x in parallel.
(ie., inner loop is a parallel loop) 
If addition is assumed to be commutative and associative,
then outer loop is a parallel loop as well. 

Question: How do we tell which loops are parallel? 

Exploiting coarse-grain Parallelism
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To exploit pipelines, instructions must be scheduled properly.

LOAD R1, M1
R1 <- R1 + 1 
LOAD R2, M2
R2 <- R2 + 1

LOAD R1, M1

 

R2 <- R2 + 1

LOAD R2, M2
R1 <- R1 + 1

LOADs are not overlapped LOADs are overlapped

- Software pipelining: instruction reordering across loop boundaries
- Hardware vs software: 
          superscalar architectures: processor performs reordering on the fly

          VLIW, in-order issue architectures: hardware issues instructions in order
(Intel P6, AMD K5, PA-8000)

(CRAY , DEC ALPHA 21164)
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Exploiting locality (I)

P  M P  M P  M P  M

Interconnection Network

    Y[i] = Y[i] + A[i,j]*X[j]

 

y A x

=
  do i = 1..N

do j = 1..N

Data distribution: which data is mapped to each processor?

Computation and data distributions should be "aligned"
to optimize locality: a processor should "own" the data it needs
for its computation. Misaligned references: communication

Question: What are good distributions for MVM?

Computation distribution: which iterations does a processor do?
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Exploiting locality (II)

    Y[i] = Y[i] + A[i,j]*X[j]

 

y A x

=
  do i = 1..N

do j = 1..N

C

P
MC

Processor has a 1st and 2nd level cache
and local memory

Uniprocessor locality

• Program must have spatial and temporal locality of reference
to exploit caches.

• Straight-forward coding of most algorithms results in programs
with poor locality.

• Data shackling: automatic blocking of codes to improve locality
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Worrying simultaneously about parallelism and locality is hard.

Radical solution: multithreaded processors

• Forget about locality.
• Processor maintains a pool of active threads.
• When current thread makes a non-local memory reference,

processor switches to different thread.
• If cost of context-switching is small, this can be a win.
• Tera, IBM Blue Gene machine
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Summary

To obtain good performance, an application program must

• exploit coarse-grain parallelism

• exploit temporal and spatial locality of reference

• exploit instruction level parallelism

Systems software must support

• low-cost process management

• low-latency communication

• efficient synchronization
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Mismatch with conventional software environments:

• Conventional languages do not permit expression of parallelism
or locality.

• Optimizing compilers focus only on reducing the operation
count of the program.

• O/S protocols for activities like inter-process communication
are too heavy-weight.

• New problems: load balancing

=>

Need to re-design languages, compilers and systems software to
support applications that demand high-performance computation.
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Lecture Topics

• Applications requirements: examples from computational
science

• Architectural concerns: shared and distributed memory
computers, memory hierarchies, multithreaded processors,
pipelined processors

• Explicitly parallel languages: MPI and OpenMP APIs

• Restructuring compilers: Program analysis and transformation

• Memory hierarchy management: Block algorithms, tiling and
shackling.
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Lecture Topics (cont.)

• Automatic parallelization: shared and distributed memory
parallelization, High Performance FORTRAN.

• Program optimization: control dependence, static single
assignment form, dataflow analysis, optimizations.

• Exploiting instruction level parallelism: instruction scheduling,
software pipelining.

• Object-oriented languages: Object models and inheritance

19


