
✬

✫

✩

✪

Scalar Optimization

1

✬

✫

✩

✪

Organization

1. What kind of optimizations are useful?

2. Program analysis for determining opportunities for optimization:

dataflow analysis:

• lattice algebra

• solving equations on lattices

• applications to dataflow analysis

3. Speeding up dataflow analysis:

• exploitation of structure

• sparse representations: control dependence, SSA form, sparse

dataflow evaluator graphs

2

✬

✫

✩

✪

Optimizations performed by most compilers

• Constant propagation: replace constant-valued variables with
constants

• Common sub-expression elimination: avoid re-computing value
if value has been computed earlier in program

• Loop invariant removal: move computations into less frequently
executed portions of program

• Strength reduction: replace expensive operations (like
multiplication) with simpler operations (like addition)

• Dead code removal: eliminate unreachable code and code that
is irrelevant to output of program

3

✬

✫

✩

✪

Optimization example:

DO J = 1,100

DO I = 1,100

A[I,J] = 1

If we assume column-major order of storage, and 4 bytes per array

element,

Address of A[I,J] = BaseAddress(A) + (J-1)*100*4 + (I-1)*4

= BaseAddress(A) + J*400 + I*4 - 404

• Only the term I ∗ 4 depends on I => rest of computation is

invariant in the inner loop and can be hoisted out of it.

• Further hoisting of invariant code is possible since only the subterm

J ∗ 400 depends on J .

• Since I and J are incremented by 1 each time through the loop,

expressions like I ∗ 4 and J ∗ 400 can be strength reduced by

replacing them with additions.

4

✬

✫

✩

✪

Pseudo-code for original loop nest:

DO J = 1,100

DO I = 1,100

t = BaseAddress(A) + J*400 + I*4 - 404

STORE(t,1)

Pseudo-code for optimized loop nest:

t0 = BaseAddress(A) - 404

DO J = 1,100

t0 = t0 + 400

t1 = t0

DO I = 1,100

t1 = t1 + 4

STORE(t,1)

5

✬

✫

✩

✪

Terminology

• A definition of a variable is a statement that may assign to
that variable. Definitions of x:

(i) x = 3

(ii) ... F(x,y).. (call by reference)

In second example, invocation of F may write to x,

so to be safe, we declare invocation to be a

definition of x.

• A use of a variable is a statement that may read the

value of that variable. Uses of x:

(i) y = x + 3

(ii) ...F(x,z)...

6

✬

✫

✩

✪

Aliasing: occurs in a program when two or more names refer to the
same storage location.

Examples:

(i)

procedure f(vax:x,y)

....

...f(z,z) ... f(a,b)...

Within f, reference parameters x and y may be aliases!

(ii)

..

x := 3;

y := @x;

*y := 5;

....x...

x and *y are aliases for the same location!

7

✬

✫

✩

✪

Our position:

We will not perform analysis for variables that may be aliased such
(reference parameters, local variables whose addresses have been
taken, etc.).

This implies we can determine syntactically where all definitions
and uses of a variable are.

More refined approach: perform alias analysis.

8

✬

✫

✩

✪

For the next few slides, we will focus on constant propagation to
illustrate the general approach to dataflow analysis.

Examples:

(i)... ...

x := 1; x:= 1;

y := x + 2; y := 3;

if x > z then y:= 5; fi; => if 1 > z then y:= 5; fi;

...y... ...y...

Constant propagation may simplify control flow as well:

(ii)... ...

x := 1; x:= 1;

y := x + 2; y := 3; <-- dead code

if y > x then y:= 5; fi; => if true then y := 5; <-- simplify

...y... ...5...

9

✬

✫

✩

✪

Why do opportunities for constant propagation arise in programs?

• constant declarations for modularity
• macros
• procedure inlining: small methods in OO languages
• machine-specific values

10

✬

✫

✩

✪

Overview of algorithm:

1. Build the control flow graph of program.
makes flow of control in program explicit

2. Perform “symbolic evaluation” to determine constants.

3. Replace constant-valued variable uses by their values and
simplify expressions and control flow.

11

✬

✫

✩

✪

Step1: build the control flow graph (CFG).

Example:

...

x := 1;

y := x+2;

if (y > x) then y := 5; fi;

...y...

12

✬

✫

✩

✪

1

1

1 3

1

3

5

51

x := 1

START

y:= x + 2

y > x

y := 5

merge

...y....

control flow graph (CFG)

state vectorson CFG edges

13

✬

✫

✩

✪

Algorithm for building CFG: easy, only complication being break’s
and GOTO’s (need to identify jump targets)

Basic Block: straight-line code without any branches or merging of
control flow

Nodes of CFG: statements(or basic blocks)/switches/merges

Edges of CFG: represent possible control flow sequence

14

✬

✫

✩

✪

Symbolic evaluation of CFG for constant propagation

Propagate values from following lattice:

false true -1 0 1 ...

definitely not a constant

may or may not be constant

join(T,0) = T
join(0,-1) = T

meet(0,-1) =
meet(T,1) = 1

Two operators:

• join(a,b): lowest value above both a and b (also written as
a ∪ b)

• meet(a,b): highest value below both a and b (also written as
a ∩ b)

Symbolic interpretation of expressions: EVAL(e, Vin): if any
argument of e is � (or ⊥) in Vin, return � (or ⊥ respectively);
otherwise, evaluate e normally and return that value

15

✬

✫

✩

✪

1. Associate one state vector with each edge of the CFG,
initializing all entries to ⊥. Initialize work-list to empty.

2. Set each entry of state vector on edge out of START to �, and

place this edge on the worklist.

16

✬

✫

✩

✪

3. while worklist is not empty do

Get edge from worklist;

Let state vector on edge be Vin;

//Symbolically evaluate target node of the edge,

//using the state vectors on its inputs,

//and propagate result state vector to output edge of node;

if (target node is assignment statement x:= e)

Propagate Vin[EVAL(e,Vin)/x] to output edge;

else if (target node is switch(p))

{if EVAL(p,Vin) is T, Propagate Vin to all outputs of switch;

else if EVAL(p,Vin) is true, Propagate Vin to true side of switch;

else Propagate Vin to false side of switch;

}

else //target node is merge

Propagate join of state vectors on all inputs to output;

If this changes the output state vector, enqueue output edge

on worklist;

od;

17

✬

✫

✩

✪

Running example:

1

1

1 3

1

3

5

51

x := 1

START

y:= x + 2

y > x

y := 5

merge

...y....

control flow graph (CFG)

state vectorson CFG edges

18

✬

✫

✩

✪

Algorithm can quite subtle:

x := 1

START

...........

p

x := x +1

merge

..x....

First time through loop, use of x in loop is determined to be
constant 1. Next time through loop, it reaches final value �.

19

✬

✫

✩

✪

Complexity of algorithm:

Height of lattice = 2 => each state vector can change value 2 ∗ V

times.

So while loop in algorithm is executed at most 2 ∗ E ∗ V times.

Cost of each iteration: O(V).

So overall algorithm takes O(EV 2) time.

20

✬

✫

✩

✪

Questions:

• Can we use same work-list based algorithm with different
lattices to solve other analysis problems?

• Can we improve the efficiency the algorithm?

Need to separate what is being computed from how it is being
computed => use algebras once again!!

21

✬

✫

✩

✪

Lattice algebraic approach to dataflow analysis

Abstractly, our work-list algorithm can be viewed as one solution
procedure for solving a set of lattice algebraic equations.

Dataflow lattices:

• partially order set of finite height
• meet and join operations with appropriate algebraic properties
are defined for all pairs of values from po-set.

These properties imply that the lattice has a least and a greatest
element.

22

✬

✫

✩

✪

Examples:

false true -1 0 1 ...

{x,y,z}

{x,y} {x,z} {y,z}

{y}{x} {z}

{}

lattice for constant propagation power set of variables {x,y,z}

23

✬

✫

✩

✪

Monotonic function: If D is a partially ordered set and f : D → D,
f is said to be monotonic if x ⊆ y => f(x) ⊆ f(y).

Intuitively, if the input of a monotonic function is increased, the
output either stays the same or increases as well.

Examples of monotonic functions on CP lattice:

• identity: f(x) = x
• bottom function: f(x) = ⊥
• constant function: f(x) = 2

Examples of non-monotonic functions on CP lattice:
f(x) = if (x == 2) then 1 else ⊥

24

✬

✫

✩

✪

Theorem: Let D be a lattice of finite height and f : D → D be
monotonic. Then, the equations x = f(x) has a least and a greatest
solution given by the limits of the chains ⊥, f(⊥), f2(⊥), and
�, f(�), f2(�),
Proof:

⊥⊆ f(⊥)(definitionof ⊥)
f(⊥) ⊆ f2(⊥)(monotonicityoff)

....

=>⊥⊆ f(⊥) ⊆ (f2(⊥))...

Since the lattice has finite height, this chain has some largest
element l, and f(l) = l. So l solves the equation. It is also easy to
show that l is the least solution to the equations.

A similar argument shows that a greatest solution exists.

25

✬

✫

✩

✪

greatest solution

least solution

x
.

x

Examples:

• f(x) = ⊥
limit(⊥, f(⊥) =⊥, ...) =⊥
limit(�, f(�) =⊥, f(⊥) =⊥, ...) =⊥

• f(x) = x
limit(⊥, f(⊥) =⊥,) =⊥
limit(�, f(�) = �,) = �

26

✬

✫

✩

✪

Corollary:

If f , g, h etc are monotonic functions, the system of equations

x = f(x, y, z...)

y = g(x, y, z, ..)

z = h(x, y, z, ..)....

has least and greatest solutions given by the limits of the obvious
chains (eg, least solution is obtained by starting with ⊥ for all
variables, substituting into right hand sides to get new values for
all variables, and iterating till convergence occurs).

27

✬

✫

✩

✪

Connection between constant propagation and lattice equations:
iterative procedure is just a method to solve lattice equations!

S0 = [T,T]

S1 = S0{1 / x}
S2 = S1{2 / y }
S3 = if (S2[y] < S2[x]) or (S2[y]=T) or (S2[x] = T)
 then S2
 else S3
.....
S6 = S4 U S5
......

x := 1

START

y:= x + 2

y > x

y := 5

merge

...y....

S0

S1

S2

S3

S4

S5

S6

(2 variables)S0, S1, S2,..... : CxC

Lattice: Ctrue false ... -1 0 1

28

✬

✫

✩

✪

Question: since equations have many solutions in general, which
one should we compute?

For CP, least solution gives more accurate information than other
solutions.

x := 1

START

merge

y := ...

p(y)

...x...

[1,T]

[T,T]

[T,T]

[T,T]

[T,T]

[T,T]

[T,T]

[1,T]

[1,T]

[1,T]

[1,T]

[1,T]

[.....]: least solution

[.....]: greatest solution

In general, if confluence operator is join, compute least solution;
otherwise compute greatest solution.

29

✬

✫

✩

✪

General specification of dataflow problem:

• Lattice: finite height
• Rules for writing down equations from CFG
• Confluence operator

No special arguments about termination or complexity are needed.

30

✬

✫

✩

✪

Constant propagation is example of
FORWARD-FLOW/ALL-PATHS problem.

Intuitively, data is propagated forward in CFG, and value is
constant at a point p only if it is the same constant for all paths
from start to p.

General classification of dataflow problems:

reaching definitions

very busy expressions live variables

constant propagation

available expressions

BACKWARD

FORWARD

ALL PATHS ANY PATH

31

✬

✫

✩

✪

Available expressions:FORWARD FLOW, ALL PATHS

Definition: An expression ’x op y’ is available at a point p if every
path from START to p contains an evaluation of p after which
there are no assignments to x or y.

Lattice: powerset of all expressions in program ordered by
containment

32

✬

✫

✩

✪

y := x + 1 z := x + 1

merge

...x+1...

START

<---- x+1 is "available" here

x := y op z

E0

E1

E1 = {y op z} U (E0 - Ex)

(where Ex is all expressions involving x)

START

E0 = { }

EQUATIONS:

Lattice: powerset of all expressions in procedure

confluence operator: meet (intersection)

compute greatest solution

33

✬

✫

✩

✪

Reaching definitions:FORWARD FLOW, ANY PATH

A definition d of a variable v is said to reach a point p if there is a
path from START to p which contains d, and which does not
contain any definitions of v after d.

a := READ()

b := READ()

d := b - a

d := b + d

d > 0

d := a + b

merge

print (d)

START

merge

d > b

END

d0

d1

d2

{}

{d0}

{d0,d1}

{d0,d1,d2}

{d0,d1,d2}

{d0,d1,d4}

d3

d4

{d0,d1,d2,d4}

{d0,d1,d3}

{d0,d1,d2,d3}

{d0,d1,d2,d3}

Lattice: powerset of definitions in procedure

Equations:

START
{}

x := e
Din

Dout

Dout = d {d} U (Din - dx)

(dx is set of all definitions of x)

Compute least solution

Confluence operator: join (union)

Complexity: D*E*D (D is number of definitions)

34

✬

✫

✩

✪

Many intermediate representations record reaching definitions
information in graphical form.

def-use chain: edge whose source is a definition of variable v, and
whose destination is a use of v reached by that definition

use-def chain: reverse of def-use chain

a := READ()

b := READ()

d := b - a

d := b + d

d > 0

d := a + b

merge

print (d)

START

merge

d > b

END

d0

d1

d2

{}

{d0}

{d0,d1}

{d0,d1,d2}

{d0,d1,d2}

{d0,d1,d4}

d3

d4

{d0,d1,d2,d4}

{d0,d1,d3}

{d0,d1,d2,d3}

{d0,d1,d2,d3}

def-use chains

35

✬

✫

✩

✪

Live variable analysis:BACKWARD FLOW, ANY PATH

A variable x is said to be live at a point p if x is used before being
assigned on some path from p to END (used in register allocation).

Lattice: powerset of variables ordered by containment

Equations:

END

{}

x := y op z

E0

E1 = {y,z} U (E0 - {x})

Confluence operator: join (union)

Compute least solution

36

✬

✫

✩

✪

Very busy expressions:FORWARD FLOW, ALL PATHS

An expression e (= y op z) is said to be very busy at a point p if it
is evaluated on every path from p to END before an assignment to
y or z.

Lattice: powerset of expressions ordered by containment

Equations:

END

{}

x := y op z

E0

E1 = {y op z} U (E0 - Ex)

Compute greatest solution

(Ex is set of expressions containing x)

Confluence operator: meet (intersection)

37

✬

✫

✩

✪

Pragmatics of dataflow analysis:

• Compute and store information at basic block level.
• Use bit vectors to represent sets.

Question: can we speed up dataflow analysis?

Two approaches:

• exploit structure in control flow graph
• exploit sparsity

38

✬

✫

✩

✪

Optimizing Dataflow Analaysis

39

✬

✫

✩

✪

Constant propagation on CFG: O(EV 2)
Reaching definitions on CFG: O(EN2)
Available expressions on CFG: O(EA2)

Two approaches to speeding up dataflow analysis:

• exploit structure in the program
• exploit sparsity in the dataflow equations: usually, a dataflow
equation involves only a small number of dataflow variables

40

✬

✫

✩

✪

Exploiting program structure

• Work-list algorithm did not enforce any particular order for
processing equations

• Should exploit program structure to avoid revisiting equations
unnecessarily

p

y =x....

x = 2 x = 3

e1 e2

e3

- we should schedule e3 after we have processed e1 and e2;
 otherwise e3 will have to be done twice

- if this is within a loop nest, can be a big win

41

✬

✫

✩

✪

General approach to exploiting structure: elimination

• Identify regions of CFG that can be preprocessed by collapsing
region into a single node with the same input-output behavior
as region

• Solve dataflow equations iteratively on the collapsed graph.
• Interpolate dataflow solution into collapsed regions.

What should be a region?

• basic-blocks
• basic-blocks, if-then-else, loops
• intervals
•

Structured programs: limit in which no iteration is required

42

✬

✫

✩

✪

Example: reaching definitions in structured language

To summarize the effect of a region, compute gen and kill for
region.

Dataflow equation for region can be written using gen and kill:

in

out

region

R

gen[R]: set of definitions in R from which there is
 a path to exit free of other definitions of the same variable

kill[R]: set of definitions in program that do not reach

out = gen[R] U (in - kill[R])

exit of R even if they reach the beginning of R

43

✬

✫

✩

✪

a = b + cd

R

p

R1 R2

R1

R2

p

R1

R

R

R

gen[R] = {d}

kill [R] = Da (all definitions of a)

out[R] = gen[R] U (in[R] - kill[R])

gen[R] = gen[R2] U (gen[R1] - kill[S2])

kill[R] = kill[R2] U kill[R2]

gen[R] = gen[R1] U gen[R2]

kill[R] = kill[R1]

U

kill[R2]

gen[R] = gen[R1]

kill[R] = kill[R1]

in[R2] = gen[R1] U (in[R] - kill[R1])
in[R1] = in[R]

in[R1] = in[R2] = in[R]

in[R1] = in[R] U gen[R]

44

✬

✫

✩

✪

Observations:

• For structured programs, we can solve dataflow problems like
reaching definitions purely by elimination (without any
iteration) (complexity: O(EV)).

• For structured programs, we can even solve the dataflow
problem directly on the abstract syntax tree (no need to build
the control flow graph).

• For less structured programs (like reducible programs), we
must build the control flow graph to identify regions like
intervals, but there is still no need to iterate.

45

✬

✫

✩

✪

Exploiting sparsity to speed up dataflow analysis

Example: constant propagation

• CFG algorithm for constant propagation used control flow
graph to propagate state vectors.

• Propagating information for all variables in lock-step forces a
lot of useless copying information from one vector to another
(consider a variable that is defined at top of procedure and
used only at bottom).

Solution:

• do constant propagation for each variable separately
• propagate information directly from definitions to uses,
skipping over irrelevant portions of control flow graph

Subtle point: in what order should we process variables??

46

✬

✫

✩

✪

Constant propagation using def-use chains

• Associate cell with each lhs and rhs occurence of all variables,
initialize to ⊥.

• Propagate � along each def-use edge out of START, and
enqueue target statements of def-use edges onto worklist.

• Enqueue all definitions with constant RHS onto worklist.
• while (worklist is not empty) do

dequeue definition d from work-list;

evaluate RHS of d using cell values for RHS variables

and update LHS cell;

if this changes LHS cell value,

propagate new value along def-use chains to each use

(take join of cell value at use and LHS cell value);

if cell value at use changes and target statement is a definit

enqueue target statement onto worklist;

od;

47

✬

✫

✩

✪

Example:

x := 1

START

y:= x + 2

y > x

merge

...y....

y := 45y := 5

control flow graph (CFG)

def-use edges

cell for value at definition/use

48

✬

✫

✩

✪

Complexity: O(sizeofdef − usechains)
This can be as large O(N2V) where N is size of set of CFG nodes.
However, with SSA form, can be reduced to O(EV).

Problem with algorithm: loss of accuracy.

Propagation along def-use chains cannot determine directly that
y:= 45 is dead code, so last use of y is not marked constant.

One possibility: repeated cycles of reaching definition computation,
constant propagation and dead code elimination.

Is there a better way?

Key idea:

• find unreachable statements during constant propagation
• do not propagate values out of unreachable definitions

49

✬

✫

✩

✪

One approach: use control dependence and def-use chains

Intuitive idea of control dependence: Node n is control dependent
on predicate p if p determines whether n is executed.

Convention: assume START is a predicate so unconditionally
executed statements are control dependent on START.

CDG: Control dependence graph

x := 1

START

y:= x + 2

y > x

merge

...y....

y := 45y := 5

control flow graph (CFG)

control dependence edge

50

✬

✫

✩

✪

Algorithm: Propagate “liveness” along control dependence edges
while propagating constants along def-use chains.

x := 1

START

y:= x + 2

y > x

merge

...y....

y := xy := 5

control dependence edges

def-use chains

51

✬

✫

✩

✪

Constant propagation

• Associate cell with each lhs and rhs occurence of all variables,
and with each statement, initialized to ⊥

• Propagate � along each def-use edge and control dependence
edge out of START. If value in any target cell changes, enqueue
target statement onto worklist.

52

✬

✫

✩

✪

• while (worklist is not empty) do

dequeue statement d from work-list;

if control dependence cell of statement is \top

switch (type of d) :

case (definition):

{Evaluate RHS of d using cell values for RHS variables

and update LHS cell;

If this changes LHS cell value,

propagate new value along def-use chains to each use

(take join of cell value at use and LHS cell value);

If cell value at use changes, enqueue target statement onto

worklist;

}

case (switch) :

{Evaluate predicate and propagate along appropriate control

dependence edges out of predicate;

If cell value at target changes,

enqueue target statement onto worklist;

}

fi; od;

53

✬

✫

✩

✪

Observations:

• We do not propagate information out of dead (unreachable)
statements.

• However, precision of information is still not as good as CFG
algorithm: we still propagate information out of statements
that are executed but are irrelevant to output (other sort of
dead statements, as in Slide 18).

• Need an algorithm to compute control dependence in general
graphs.

• Size of CDG: O(EN) (can be reduced)

54

✬

✫

✩

✪

Solutions:

• Require that a variable assigned on one side of a conditional be
assigned on both sides of conditional (by inserting dummy
assignments of form x := x). Programmers don’t want to do
this.

• Make compiler insert dummy assignments. Hard to figure out
in presence of unstructured control flow.

• Use SSA form: ensure that every use is reached by exactly one
definition by inserting φ-functions at merges to combine
multiple reaching definitions.

55

✬

✫

✩

✪

SSA algorithm for Constant Propagation

x := 1

START

y:= x + 2

y > x

y := 5

merge

...y....

Φ

- phi-function is like pseudo-assignment

One possibility: one phi-function for every variable
 at every merge in CFG.

- phi-function combines different reaching definitions
 at a merge into a single one at output of merge

- control dependence at merge: compute for each side of the
 merge separately

Constant propagation:

Where should phi-functions be placed?

 similar to previous algorithm, but at merge,
 propagate join of inputs only from live sides of merge

Computing minimal SSA form: O(|E|) per variable
 (Pingali and Bilardi PLDI 96)

(eg. variable x in example)

Minimal SSA form: permit def-use chains to bypass
a merge if same definition reaches all sides of merge

56

✬

✫

✩

✪

Same idea can be applied to other dataflow analysis problems

• perform dataflow analysis for each sub-problem separately (eg.
for each expression separately in available expressions problem)

• build a sparse graph in which only statements that modify or
use dataflow information for sub-problem are present, and solve
in that

Sparse dataflow evaluator graph can be built in O(|E|) time per
problem (Pingali and Bilardi PLDI’96)

57

✬

✫

✩

✪

..x+y...

START

p1

p2

x:=..... ..x+y..

..x+y..

x:=...

END

Control Flow Graph

Av := 1

Av:=0

Av := 0 Av := 1

Av := 1

Av:= 0

...Av...

...Av...

..Av..

φ

φ
confluence operator: meet

(not available)

(available)1

0

Sparse Dataflow Evaluator Graph

for availability of x+y

58

✬

✫

✩

✪

Advantage: sparse graph is usually small and acyclic

Disadvantage: need to solve each sub-problem separately

Many optimizing compilers now use sparse dataflow evaluation
graphs (eg: Intel’s compilers for Merced).

59

