
✬

✫

✩

✪

Locality Enhancement
for Imperfectly-nested Loops

1

✬

✫

✩

✪

General approach

Source code Statement
Iteration Spaces

for ...

Code

gen

r

k

c

r

c1

1

1

2

2 c

c
r

r

k1
1

1

2
T

S

1

2

Product Space Transformed
Product Space

Output code

F

F

2

1

S

2

for c
 for r
 for k

 S2
 S1

• Each statement has a statement iteration space.
• Product space: Cartesian product of individual statement

interation spaces.
• Each statement iteration space is embedded into product space

using affine embedding functions Fi.
• Product space is transformed using linear loop transformations

to enhance locality.
• Code is produced to scan points in final space.

2

✬

✫

✩

✪

Key result required to compute embeddings:

Farkas’s Lemma: Any affine function f(x) which is non-negative
everywhere in a polyhedron Ax + b ≥ 0 can be represented as
follows:

f(x) = λ0 + ΛT (Ax + b) where λ0 ≥ 0,Λ ≥ 0

In words: any function that is positive everywhere in a polyhedron
Ax + b ≥ 0 can be expressed as a positive linear combination of the
rows of the vector Ax + b.

3

✬

✫

✩

✪

Example for Farkas’s Lemma: Let f(x) = ax + b be non-negative in
domain

1 20
x

What are constraints on a and b?

1 2
0 x

-a

-2a

It is easy to see geometrically that
if a is +ve, then b ≥ −a if a is -ve, then b ≥ −2a

How do we deduce this algebraically?

4

✬

✫

✩

✪

Domain:
x − 1 ≥ 0
2− x ≥ 0

Function: f(x) = ax + b

From Farkas’s lemma, we can write
f(x) = λ0 + λ1(x − 1) + λ2(2− x)

Equating coefficients for the two expressions for f , we see that

λ0 − λ1 + 2λ2 = b

λ1 − λ2 = a

λ0 ≥ 0
λ1 ≥ 0
λ2 ≥ 0

5

✬

✫

✩

✪

Use Fourier-Motzkin elimination to eliminate λ’s from system:

λ0 − λ1 + 2λ2 = b

λ1 − λ2 = a

λ0 ≥ 0
λ1 ≥ 0
λ2 ≥ 0

to get

(b + a) ≥ max(−a, 0)

which is equivalent to what we determined geometrically.

6

✬

✫

✩

✪

Determining embeddings for legality

Let us consider a simpler problem than locality enhancement:

Given an imperfectly nested loop,

find embeddings into product space to generate a legal program
(lexicographic order of execution in product space is legal).

7

✬

✫

✩

✪

Example for embeddings:

S1: for i1 = 0, N-1 for j1 = -inf, inf

A(i1) = for j2 = -inf, inf

=> if (S1(m) is mapped to (j1,j2))

S2: for i2 = 0, N-1 execute S1(m);

sum = sum + A(i2+1) if (S2(n) is mapped to (j1,j2))

execute S2(n);

i2

i1

j2

j1

0

0

a2
b2

i2 + a3
b3

a0
b0

i1 + a1
b1

8

✬

✫

✩

✪

Dependence polyhedron:

S1: for i1 = 0, N-1

A(i1) =

S2: for i2 = 0, N-1

sum = sum + A(i2+1)

i2

i10

0

i1 = i2 + 1

0 ≤ i1 ≤ N − 1

0 ≤ i2 ≤ N − 1

which can be written as follows:

9

✬

✫

✩

✪

−1 1 0

1 −1 0

1 0 0

−1 0 1

0 1 0

0 −1 1

i1

i2

N

 +

1

−1

0

−1

0

−1

≥ 0

Let us write this as:

D

i1

i2

N

 + d ≥ 0

10

✬

✫

✩

✪

Constraint on embeddings:

 a0

b0

 i1 +

 a1

b1

 �

 a2

b2

 i2 +

 a3

b3

Let us first determine embeddings that make the first dimension of
difference vector between dependent iterations +ve.

We want f(x) = a2 ∗ i2 + a3− a0 ∗ i1− a1 > 0

which can be written as f(x) = a2 ∗ i2 + a3− a0 ∗ i1− a1− 1 ≥ 0

11

✬

✫

✩

✪

Using Farkas’s lemma, we can write this as follows:

f(x) = a2 ∗ i2 + a3− a0 ∗ i1− a1− 1 ≥ 0−−−−− (1)

f(x) = λ0 + ΛT (D ∗

i1

i2

N

 + d)−−−−− (2)

Equating coefficients, we get:

−a0 = −λ1 + λ2 + λ3 − λ4

a2 = λ1 − λ2 + λ5 − λ6

λ4 + λ6 = 0

a3− a1 = λ0 + λ1 − λ2 − λ4 − λ6

12

✬

✫

✩

✪

Using Fourier-Motzkin elimination to eliminate the λ’s, we get the
following constraints on the coefficients of the embedding functions:

a0 + a1 < a3

a0 ≤ a2

Let us see geometrically why this makes sense!

13

✬

✫

✩

✪

a2
b2

i2 + a3
b3

a0
b0

i1 + a1
b1

i2

i1

j2

j1

0

0

a0+a1 a3

1

a0 + a1 < a3

a0 ≤ a2

First constraint ensures that first two dependent points are in
correct order.
Second constraint ensures that “jumps” to successive points are
always larger for S2 than S1.

14

✬

✫

✩

✪

Other choices for embedding functions:

 a0

b0

 i1 +

 a1

b1

 �

 a2

b2

 i2 +

 a3

b3

• Make first dimension of difference vector = 0 within
dependence polyhedron
a0 ∗ i1 + a1 = a2 ∗ i2 + a3
This can be expressed as two inequalities, and two applications
of Farkas’s lemma gives a0 + a1 = a3, a0 = a2.

• Make second dimension of difference vector positive within
dependence polyhedron
g(x) = (b2 ∗ i2 + b3)− (b0 ∗ i1 + b1) > 0
This gives b0 + b1 < b3, b0 ≤ b2.

15

✬

✫

✩

✪

Complete solution for legal embeddings:

• Dependence vector of form (+, ∗)T

a0 + a1 < a3

a0 ≤ a2

• Dependence vector of form (0,+)T

a0 + a1 = a3

a0 = a2

b0 + b1 < b3

b0 ≤ b2

• We can also get a dependence vector of form (0, 0)T

16

✬

✫

✩

✪

General picture for determining embeddings into product space:

Statement iteration spaces: I1, I2, ..., In

Product space: I1 × I2... × In

Embeddings: F1, F2, ..., Fn

Dependence polyhedra: (D1, d1), (D2, d2), ..., (Dk, dk)

Legality:

∀(Dm, dm)∀(ij → ik) ∈ (Dm, dm).Fk(ik)− Fj(ij)
 0

Solving for embeddings: solve for each dimension of P

1. first dimension: all difference vector entries must be positive or
zero

2. remaining dimensions: satisfied dependences can be dropped

17

✬

✫

✩

✪

Small caveat: we want to avoid a solution in which all statement
instances get mapped to a single point in product space!!

This is a trivial solution and is not very useful.

Our solution:

Restrict Fi to act like the identity in the subspace Ii of the product
space.

There may be other ways to solve this problem, but this seems to
work fine in practice.

18

✬

✫

✩

✪

Determining embeddings that promote locality:

Reuse polyhedra: formulate similar to dependence polyhedra

One strategy:

• find legal embeddings Fi

• for each legal embedding, find best transformation T

• pick best one

Too many possibilities....

One approach: starting with first dimension, determine embeddings
dimension by dimension, choosing embeddings for a dimension
before going on to next one.

Seems to work fine in practice, but in principle, it may fail to find
legal embeddings....

19

✬

✫

✩

✪

Sketch of greedy algorithm: [Ahmed,Mateev,Pingali (ICS’00)]

Go dimension by dimension trying to

• height reduce reuse classes
• make entries of dependence vectors positive to enable tiling

To avoid combinatorial explosion, pick embeddings for each
dimension before looking at succeeding dimensions.
DU = set of all unsatisfied dependence classes;

DS = set of all satisfied dependence classes;

RS = ordered set of all reuse classes sorted by priority;

for each dimension p of product space P do

{ L = Legality Constraints(p,DU,DS);

if system L has solutions

{Embedding coefficients for dimension p =

PromoteReuse(p,L,RS);

Update DS and DU;

}
else abort;

}

20

✬

✫

✩

✪

ALGORITHM LegalityConstraints(q, DU, DS) {
/*

q is dimension being processed.

DU is set of unsatisfied dependence classes.

DS is set of satisfied dependence classes.

*/

Construct system Temp constraining the qth dimension

of every embedding function as follows:

for each unsatisfied dependence class u ∈ DU

Add constraints so that each entry in dimension q

of all difference vectors of u is non-negative;

//enable tiling by considering satisfied dependence classes as well

for each satisfied dependence class s ∈ DS

Add constraints so that each entry in dimension q

of all difference vectors of s is non-negative;

Use Farkas’ lemma to convert system Temp into

a system L constraining unknown embedding

coefficients;

Return L; }

21

✬

✫

✩

✪

ALGORITHM PromoteReuse(q,L,RS) {
/*

q is dimension being processed.

L is a system constraining unknown embedding coefficients.

RS is set of prioritized reuse classes.

*/

L′:= L

for every reuse class R in RS in priority order

{
Z := System constraining unknown embedding function

coefficients so qth dimension entries of

all reuse vectors of class R is zero

if (L′ ∩ Z �= ∅)
{

L′ := L′ ∩ Z

}
}
return any set of coefficients satisfying L′;

}

22

✬

✫

✩

✪

Limitation of this algorithm: does not consider T , so we do not
consider illegal embeddings that can be “fixed” by choosing T

appropriately.

Solution: determine T and embeddings simultaneously.

See paper for details.

Next slide shows the kind of modifications that need to be made.

23

✬

✫

✩

✪

Modification to permit skewing T :
ALGORITHM LegalityConstraints(q, DU, DS) {
/*

q is dimension being processed.

DU is set of unsatisfied dependence classes.

DS is set of satisfied dependence classes.

*/

Construct system Temp constraining the qth dimension

of every embedding function as follows:

for each unsatisfied dependence class u ∈ DU

Add constraints so that each entry in dimension q

of all difference vectors of u is non-negative;

//enable tiling by considering satisfied dependence classes as well

//permit skewing to enable tiling

for each satisfied dependence class s ∈ DS

Add constraints so that each entry in dimension q

of all difference vectors of s + positive α

is non-negative; //skewing later will eliminate -ve entries

Use Farkas’ lemma to convert system Temp into

a system L constraining unknown embedding

coefficients;

Return L; }

24

✬

✫

✩

✪

ALGORITHM LocalityEnhancement {
Q := Set of dimensions of product space;

DU := Set of unsatisfied dependence classes

(initialized to all dependence classes);

DS := Set of satisfied dependence classes

(initialized to empty set);

RS := Set of reuse classes of the program

(sorted by priority);

j := Current dimension in transformed product space

(initialized to 1);

while (Q is non-empty)

{for each q in Q

{L = LegalityConstraints(q, DU, DS);

if system L has solutions

{ Embedding coefficients for dimension j =

PromoteReuse(q,L,RS);

Update DS and DU;

Delete q from Q;

j = j + 1;

}
}

// No more dimensions q can be added to current band.

// Start a new band of fully permutable loops.

DS := empty set; }

25

✬

✫

✩

✪

Apply Algorithm DimensionOrdering to the dimensions;

Eliminate redundant dimensions;

Tile permutable dimensions with non-zero ReusePenalty;

}

26

✬

✫

✩

✪

ALGORITHM DimensionOrdering

RPO = {i1, i2, . . . ip} // ReusePenalty order

NRPO = ∅ // nearby permutation

m = p // number of dimensions left to process

k = 0 // number of dimensions processed

while RPO �= ∅
{

for dimension j = 1,m

{
l = ij ∈ RPO

Let NRPO = {i1′, i2′, . . . ik′}
if {i1′, i2′, . . . ik′, l} is legal

{ NRPO = {i1′, i2′, . . . ik′, l}
RPO = RPO − {l}
m = m − 1

k = k + 1

continue while loop

}
}

}

27

✬

✫

✩

✪

Eliminating redundant dimensions:

P: a Cartesian space

F = {F1, F2, . . . , Fn}: a set of affine embedding functions where
Fk(�ık) = Gk�ık + gk.

Number of independent dimensions of P =
number of independent rows of matrix G = [G1G2 . . . Gn].

28

✬

✫

✩

✪

Experimental results:

0

50

100

150

200

250

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

Matrix Size

M
F

L
O

P
S

LAPACK
Locality Optimized
kij-Cholesky
jki-Cholesky
jik-Cholesky
ikj-Cholesky
kji-Cholesky
ijk-Cholesky

Cholesky factorization on SGI Octane

29

✬

✫

✩

✪

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

Matrix Size

T
im

e
(s

ec
o

n
d

s)

SGI Compiler
Locality Optimized

Jacobi on SGI Octane

30

✬

✫

✩

✪

Summary

• We have seen a polyhedral framework for imperfectly-nested loop

transformations.

• We can do a reasonable job of locality enhancement in

• BLAS: inner product, MVM, MMM, triangular solve

• Cholesky factorization

• Relaxation codes like Jacobi and Gauss-Seidel

• Accurate tile size determination is a problem.

Empirical optimization might be one solution.

• Block-recursive codes: we can generate block-recursive codes from

iterative codes using this approach.

• Is product space tractable for large programs?

Perhaps we can treat basic blocks as single statement.

• LU factorization with pivoting: requires fractal symbolic analysis

• QR factorization: not clear what a compiler can do

31

