
✬

✫

✩

✪

Cache Models
and

Program Transformations

1



✬

✫

✩

✪

Goal of this lecture

• We have looked at computational science applications, and
isolated key kernels (MVM,MMM,linear system solvers,...).

• We have studied caches and virtual memory, and we
understand what causes cache misses (cold, capacity, conflict).

• Let us look at how to make some of the kernels run well on
machines with caches.

2



✬

✫

✩

✪

Matrix-vector Product
x

y A

i

j

Code:

for i = 1,N

for j = 1,N

y(i) = y(i) + A(i,j)*x(j)

Total number of references = 4N2

We want to study two questions.

• Can we predict the miss ratio of different variations of this program

for different cache models?

• What transformations can we do to improve performance?

That is, how do we improve the miss ratio?

3



✬

✫

✩

✪

Reuse Distance: If r1 and r2 are two references to the same cache
line in some memory stream, reuseDistance(r1, r2) is the number
of distinct cache lines referenced between r1 and r2.

Cache model:

• fully associative cache (so no conflict misses)

• LRU replacement strategy

• We will look at two extremes

• large cache model: no capacity misses
• small cache model: miss if reuse distance is some function of

problem size (size of arrays)

4



✬

✫

✩

✪

Scenario I

x

y A

i

j

Cache model:

• fully associative cache (no conflict misses)

• LRU replacement strategy

• cache line size = 1 floating-point number

Small cache: assume cache can hold fewer than (2N+1) numbers

Misses:

• matrix A: N2 cold misses

• vector x: N cold misses + N(N − 1) capacity misses

• vector y: N cold misses

• Miss ratio = (2N2 + N)/4N2 → 0.5

5



✬

✫

✩

✪

Large cache model: cache can hold more than (2N+1) numbers

Misses:

• matrix A: N2 cold misses

• vector x: N cold misses

• vector y: N cold misses

• Miss ratio = (N2 + 2N)/4N2 → 0.25

miss ratio

N

0.25

0.50

0.75

1.00

c/2

c = size of cache in # of fp’s

large
cache
smallcache

6



✬

✫

✩

✪

Scenario II

y A

i

j

x

Same cache model as Scenario I but different code

Code: walk matrix A by columns

for j = 1,N

for i = 1,N //SAXPY

y(i) = y(i) + A(i,j)*x(j)

It is easy to show that miss ratios are identical to Scenario I.

7



✬

✫

✩

✪

Scenario III

x

y A

i

j

Cache model:

• fully associative cache (no conflict misses)
• LRU replacement strategy
• cache line size = b floating-point numbers

(can exploit spatial locality)

Code: (original) i-j loop order

for i = 1,N

for j = 1,N

y(i) = y(i) + A(i,j)*x(j)

Let us assume A is stored in row-major order.

8



✬

✫

✩

✪

Small cache:

Misses:

• matrix A: N2/b cold misses
• vector x: N/b cold misses + N(N − 1)/b capacity misses
• vector y: N/b cold misses
• Miss ratio = (1/2 + 1/4N)*(1/b) → 1/2b

Large cache:

Misses:

• matrix A: N2/b cold misses
• vector x: N/b cold misses
• vector y: N/b cold misses
• Miss ratio = (1/4 + 1/2N)*(1/b) → 1/4b

Transition from small cache to large cache when 2N = c.

9



✬

✫

✩

✪

N

1.00

c/2

c = size of cache in # of fp’s

large small

1/4b

1/2b

cache cache

miss ratio

b = number of fp’s in one cache line

Miss ratios for Scenario III

Let us plug in some numbers for SGI Octane:

• Line size = 32 bytes ⇒ b = 4
• Cache size = 32 Kb ⇒ c = 4K
• Large cache miss ratio = 1/16 = 0.06
• Small cache miss ratio = 0.12
• Small/large transition size = 2000

10



✬

✫

✩

✪

Scenario IV

y A

i

j

x

Cache model:

• fully associative cache (no conflict misses)
• LRU replacement strategy
• cache line size = b floating-point numbers

(can exploit spatial locality)

Code: j-i loop order

for j = 1,N

for i = 1,N

y(i) = y(i) + A(i,j)*x(j)

Note: we are not walking over A in memory layout order

11



✬

✫

✩

✪

Small cache:

Misses:

• matrix A: N2/ cold misses
• vector x: N/b cold misses
• vector y: N/b cold misses + N(N − 1)/b capacity misses
• Miss ratio = 0.25*(1+ 1/b) + 1/4Nb → 0.25*(1+1/b)

Large cache:

Misses:

• matrix A: N2/b cold misses
• vector x: N/b cold misses
• vector y: N/b cold misses
• Miss ratio = (1/4 + 1/2N)*(1/b) → 1/4b

Transition from small cache to large cache when c > bN + N

12



✬

✫

✩

✪

N

1.00

c = size of cache in # of fp’s

large
cache

miss ratio

b = number of fp’s in one cache line

0.25(1 + 1/b)

0.25/b

c/(b+1) small
cache

Miss ratios for Scenario IV

Let us plug some numbers in for SGI Octane:

• Line size = 32 bytes ⇒ b = 4
• Cache size = 32 Kb ⇒ c = 4K
• Large cache miss ratio = 1/16 = 0.06
• Small cache miss ratio = 0.31
• Small/large transition size = 800

13



✬

✫

✩

✪

Scenario V: Blocked Code

x

y A

i

j

B

B

Code:

for bi = 1, N/B

for bj = 1, N/B

for i = (bi-1)*B +1, bi*B

for j = (bj-1)*B +1, bj*B

y(i) = y(i) + A(i,j)*x(j)

14



✬

✫

✩

✪

• Pick block size B so that you effectively have large cache model
while executing code within block (2B = c).

• Misses within a block:

• matrix A: B2/b cold misses
• vector x: B/b

• vector y: B/b

• Total number of block computations = (N/B)2

• Miss ratio = (0.25 + 1/2B)*1/b → 0.25/b
• For Octane, we have miss ratio is roughly 0.06 independent of

problem size.

15



✬

✫

✩

✪

Putting it all together for SGI Octane

N

1.00

0.06

0.12

2000

Point code

Blocked code

miss ratio

Miss ratio predictions for MVM point and blocked codes

We have assumed a fully associative cache.

Conflict misses will have the effect of reducing effective cache size,
so transition from large to small cache model should happen sooner
than predicted.

16



✬

✫

✩

✪

MVM L1-cache Miss Rates

0

0.02

0.04

0.06

0.08

0.1

0.12

10
0

30
0

50
0

70
0

90
0

11
00

13
00

15
00

17
00

19
00

21
00

23
00

25
00

27
00

29
00

size

m
is

s 
ra

te

original code

blocked, B=50

Experimental Results on SGI Octane

Predictions agree reasonably well with experiments.

17



✬

✫

✩

✪

Key transformations

• Loop permutation

for j = 1, N for i = 1, N

for i = 1, N => for j = 1, N

y(i) = y(i) + A(i,j)*x(j) y(i) = y(i) + A(i,j)*x(j)

• Loop tiling

for i = 1, N for bi = 1, N/B

for j = 1, N => for bj = 1, N/B

y(i) = y(i)+A(i,j)*x(j) for i = (bi-1)*B +1, bi*B

for j = (bj-1)*B +1, bj*B

y(i) = y(i) + A(i,j)*x(j)

• Warning: these transformations may be illegal in some codes.

18



✬

✫

✩

✪

Matrix-matrix Product

i

j

k

k

C

A

B

Code:

for i = 1,N

for j = 1,N

for k = 1,N

C(i,j) = C(i,j) + A(i,k)*B(k,j)

Cache model: assume cache line size is b fp’s

19



✬

✫

✩

✪

i

j

k

k

C

A

B

b

Small cache:

Misses for each cache line of C:

• matrix A: b ∗ (N/b)
• matrix B: b ∗ N

• matrix C: b

• Total number of misses per cache line of C = N(b + 1) + b

Total number of misses = N2/b ∗ (N(b + 1) + b) → N3(b + 1)/b

Total number of references = 4N3

Miss ratio → 0.25(b + 1)/b

20



✬

✫

✩

✪

Large cache:

Cold misses = 3 ∗ N2/b

Miss ratio = 3 ∗ N2/4bN3 = 0.75/bN

For large cache model, miss ratio decreases as the size of the
problem increases!

Intuition: lot of data reuse, so once matrices all fit into cache, code
goes full blast.

21



✬

✫

✩

✪

Blocked code:

i

j

k

k

C

A

B

B

B

Code:

for bi = 1, N/B

for bj = 1, N/B

for bk = 1, N/B

for i = (bi-1)*B +1, bi*B

for j = (bj-1)*B +1, bj*B

for k = (bk-1)*B +1, bk*B

y(i) = y(i) + A(i,j)*x(j)

Choose B so we have large cache model: 3B2 < c

22



✬

✫

✩

✪

Miss ratio of blocked code = 0.75/bB.

Since B < sqrt(c/3), lower bound on miss ratio is 1.3/b ∗ sqrt(c).

For Octane, miss ratio > 0.05.

As before, we have ignored conflict misses, so actual miss ratio we
can obtain from blocking alone will be more.

23



✬

✫

✩

✪

Summary

• We have looked at two kernels: MVM and MMM.
• As usually written, these kernels have poor cache performance.
• Blocking can improve cache performance dramatically.
• Distinguishing characteristic of MVM and MMM:

perfectly-nested loop nests.
A perfectly-nested loop nest is a loop nest in which all
assignment statements are contained in the innermost loop.

• Key compiler transformations for perfectly-nested loops:
permutation and tiling.

• Neither transformation is necessarily legal or beneficial.

• How can a compiler determine legality of a transformation?
• How does a compiler which transformation to apply?

24


