
✬

✫

✩

✪

Computational Requirements
of

Scientific Applications

1

✬

✫

✩

✪

Computational Science Applications

Simulation of physical phenomena

• fluid flow over aircraft (Boeing 777 designed by simulation)
• fatigue fracture in aircraft bodies
• bone growth
• evolution of galaxies

Two main approaches

• continuous methods: fields and partial differential equations
(pde’s) (eg. Navier-Stokes equations, Maxwell’s equations,
elasiticity equations..)

• discrete methods: particles and forces between them (eg.
Gravitational/Coulomb forces)

We will focus on pde’s in this lecture.

2

✬

✫

✩

✪
u* (x,y) = ci i

Σ (x,y)iΦ

 Modeling physical phenomena using pde’s

Domain:

Boundary conditions: on

Ω

δΩ u(x,y) = x + y |(x,y) on δΩ

PDE : L u = f
x y

+ u = 0eg: δ
δ

δ
δ 22

2 2

Ω

General technique: find an approximate solution

Question: How do we choose the known functions?
 How do we find the best choice of c’s, given the functions?

that is a linear combination of known functions

x

y

3

✬

✫

✩

✪

Choice of known functions:

- periodic boundary conditions: can use sines and cosines
- finite element method :

use low degree piecewise polynomials on mesh
generate a mesh that discretizes the domain

0 1

10

0 1

0

0 1

1

4

5

3

2

1φ

φ

φ

φ

φ

0 1

u*

1-D example

2-D example

x

x

x

x

x

Mesh generation

4

✬

✫

✩

✪

−π

+π

−π

+π

0
+ Σ cos(ix) + Σ sin(ix)

i i
ai bif(x) = a

Finding the best choices of the coefficients:

f(x) cos(kx) dx = 0
+ Σ cos(ix) + Σ sin(ix)

i i
ai bi(a)cos(kx)dx

−π

+π

= ak cos(kx)cos(kx)dx

= a k π

How do you find ‘best’ choices for a’s and b’s?

 to find corresponding coefficient
- weight residual by known function and integrate

0
+ Σ cos(ix) + Σ sin(ix)

i i
a

i
b

i
f(x) - a- residualKey idea:

Analogy with Fourier series:

x

f(x)

5

✬

✫

✩

✪

++ =
1

c c* dV
1 N

φL
Ω

dV
N* φL

Ω
f dV

Ω
φ φ φ

k k k

k = 1,2,...N

L
N

(*)- f)c
i

dV = 0
Ω

φ
i i

(Σ φ
k

φ = (L (cΣ φ) - f)
N

kiii

= (L (cΣ φ) - f)
N

iii

 K c = b

* φL
Ω

ji
dV K(i,j) = f dV

Ω
b(i) =

i
φ φ

where

Weighted Residual Technique:

Weighted Residual

Equation for k unknown:

If the differential equation is linear:

This system can be written as

Key insight: Calculus problem of solving pde is converted to
linear algebra problem of solving K c = b where K is sparse

th

Residual: (L u* - f)

6

✬

✫

✩

✪

sparse (~ 100 non-zero entries per row)

iterative methods (Jacobi,conjugate gradient, GMRES)

Solving system of linear algebraic equations:

Orders of magnitude for realistic problems

Algorithms:

K c = b

factorization methods (LU,Cholesky,QR)

large (~ 10 million unknowns)

start with an initial approximation to solution
and keep refining it till you get close enough

factorize K into LU where L is lower triangular and U is upper triangular

LUc = b
Solve for c by solving two triangular systems

(roughly equal to number of mesh points)

same K, many b’s in some problems
(roughly equal to connectivity of a point)

7

✬

✫

✩

✪

Jacobi: a (slow) iterative solver

Example:

4x + 2y = 8

3x + 4y = 11

Iterative system:

xn+1 = (8 − 2yn)/4

yn+1 = (11 − 3xn)/4
n 1 2 3 4 5 6 7 8

- - - - - - - - -

x 0 2 0.625 1.375 0.8594 1.1406 0.9473 1.0527 ...

=

y 0 2.75 1.250 2.281 1.7188 2.1055 1.8945 2.0396 ...

8

✬

✫

✩

✪

Matrix view of Jacobi Iteration

Matrix-vector product: O(N

SAXPY, Inner product: O(N) work

Iterative method for solving linear systems Ax = b

Jacobi method: M *X
k+1

= (M - A)* X
k + b (M is DIAGONAL(A))

while (not converged) do

 do k = 1..N

do j = 1..N
 do i = 1..N
 Y[i] = Y[i] + A[i,j]*X[j]

Matrix-vector product

Y[k] = 0.0

do i = 1..N
 X[i] = (b[i] -Y[i])/A[i,i] + X[i]

SAXPY operations

Initialization

check convergence Inner product of vectors

Most of the time is spent in matrix-vector product.
Lesson for software systems people: optimize MVM

2) work

9

✬

✫

✩

✪

Reality check:

• Jacobi is a very old method of solving linear systems iteratively.

• More modern methods: conjugate gradient (CG), GMRES, etc.
converge faster in most cases.

• However, the structure of these algorithms is similar: MVM is
the key operation.

• Major area of research in numerical analysis: speeding up
iterative algorithms further by preconditioning.

10

✬

✫

✩

✪

Tangential Discussion

• Calculus problem Lu = f ⇒ linear algebra problem Kc = b.
• In some problems, we need to solve for multiple variables at

each mesh point (temperature, pressure, velocity etc.)
=> solve many linear equations with same K, different b’s.

• This is viewed as matrix equation KC = B where C and B are
matrices.

• Algorithms for solving single system can be used to solve
multiple systems as well.

• Key computation in iterative methods: matrix-matrix
multiplication (MMM) rather than matrix-vector
multiplication (MVM).

• Non-linear pde’s lead to non-linear algebraic systems which are
solved iteratively (Newton’s method etc.).
Key computation: MMM or MVM.

11

✬

✫

✩

✪

Computational Requirements

Let us estimate storage and time requirements.

• Assume 106 mesh points (rows/columns of A)
• Assume iterative solver needs 100 iterations to converge
• Assume simulation runs for 1000 time steps.

One MVM requires roughly 1012 flops

=>

Overall simulation requires 1017 flops and 1012 bytes of storage!

Can we do better?

12

✬

✫

✩

✪
0 0 0 x x
0 0 x x x
0 x x x 0
x x x 0 0
x x 0 0 0

0 1

10

0 1

0

0 1

1

4

5

3

2

1φ

φ

φ

φ

φ

0 1

u*

x

x

x

x

x

1-D case

K(i,j) = * L () dji
φ φ Ω

Ω
K[i,j] is 0 if φ and φ

i j
do not overlap!Structure of the K matrix for any pde:

For our example, K is

Half the entries are zero!
In 2-D and 3-D, an even larger percentage of matrix is zero!

Typical 3-D numbers: 10^6 rows but only 100-500 non-zeros per row!

Matrix is sparse.

13

✬

✫

✩

✪

Exploiting sparsity

Store sparse matrices in special formats to avoid storing zeros

=> storage costs are reduced!

Avoid computing with zeros when working with sparse matrices.

=> MFlops needs are reduced!

Question: How do we represent sparse matrices and how do we
compute with them?

14

✬

✫

✩

✪

a h c b e f g d
1 4 2 1 3 3 4 2

4 2 3 1 3 3 41 A.column
A.row
A.val

Three Sparse Matrix Representations

a b c d e f g h

3 3 41 3 2 4 1

a

1

e
hg

f
c d

ba
1 3 42

1
2
3
4

A

A.val

A.column

A.rowptr

A.val

A.row

A.colptr

CRS

CCS

Co-ordinate
Storage

e c b f g d h

3 2 1 3 4 2 4

Indexed access to a row

Indexed access to a column

Indexed access to neither
rows nor columns

15

✬

✫

✩

✪

MVM for CRS
for I = 1 to N do

for JJ = A.rowptr(I) to A.rowptr(I+1) -1 do
Y(I) = Y(I) + A.val(JJ)*X(A.column(JJ))

od
od

MVM for Co-ordinate storage
for P = 1 to NZ do

Y(A.row(P)) = Y(A.row(P)) + A.val(P)*X(A.column(P))
od

Sparse matrix computations introduce subscripts with indirection.

16

✬

✫

✩

✪

Computational Requirements with sparse matrices

• Assume 106 mesh points (rows/columns of A).
• Assume roughly 100 non-zeros per row.
• Assume iterative solver needs 100 iterations to converge.
• Assume simulation runs for 1000 time steps.

One MVM requires roughly 108 flops

=>

Overall simulation requires 1013 flops and 108 bytes of storage!

This is roughly 100 seconds on a 100 Gflop supercomputer.
Doable!

17

✬

✫

✩

✪

Flow-chart of Adaptive Finite-element Simulation of Fracture

Generator
Mesh

FormulationSolver

Error
Estimation

h/p refinement

Fracture
Mechanics

displacements

Kc = f

18

✬

✫

✩

✪

Summary

• Computational science applications: solving pde’s or pushing
particles

• PDE’s are solved using approximate techniques like fe method
• Time-consuming part: solving large linear algebraic systems
• Two approachs: iterative methods and direct (factorization)

methods
• Key operations in iterative methods:

Basic Linear Algebra Subroutines (BLAS)

• Level-1 BLAS: inner-product of vectors, saxpy
• Level-2 BLAS: matrix-vector product, triangular-solve
• Level-3 BLAS: matrix-matrix product, triangular-solve with

multiple right-hand-sides

• Important to exploit sparsity in matrix
• Exploiting sparsity complicates code.

19

