Computational Requirements of
 Scientific Applications

Computational Science Applications

Simulation of physical phenomena

- fluid flow over aircraft (Boeing 777 designed by simulation)
- fatigue fracture in aircraft bodies
- bone growth
- evolution of galaxies

Two main approaches

- continuous methods: fields and partial differential equations (pde's) (eg. Navier-Stokes equations, Maxwell's equations, elasiticity equations..)
- discrete methods: particles and forces between them (eg. Gravitational/Coulomb forces)

We will focus on pde's in this lecture.

Modeling physical phenomena using pde's
PDE : $\quad \mathrm{L} u=\mathrm{f}$ eg: $\left(\frac{\delta^{2}}{\delta x^{2}}+\frac{\delta^{2}}{\delta y^{2}}\right) u=0$
Domain: Ω

Boundary conditions: on $\delta \Omega$

$$
u(x, y)=x+y \mid(x, y) \text { on } \delta \Omega
$$

General technique: find an approximate solution that is a linear combination of known functions

$$
u^{*}(\mathrm{x}, \mathrm{y})=\sum_{\mathrm{i}} \mathrm{c}_{\mathrm{i}} \Phi_{\mathrm{i}}(\mathrm{x}, \mathrm{y})
$$

Choice of known functions:

- periodic boundary conditions: can use sines and cosines
- finite element method: generate a mesh that discretizes the domain use low degree piecewise polynomials on mesh

1-D example

2-D example

Mesh generation

Finding the best choices of the coefficients:
Analogy with Fourier series:

$$
f(x)=a_{0}+\sum_{i} a_{i} \cos (i x)+\sum_{i} b_{i} \sin (i x)
$$

How do you find 'best' choices for a's and b's?

$$
\begin{aligned}
\int_{-\pi}^{+\pi} f(x) \cos (k x) d x & =\int_{-\pi}^{+\pi}\left(a_{0}+\sum_{i} a_{i} \cos (i x)+\sum_{i} b_{i} \sin (i x)\right) \cos (k x) d x \\
& =\int_{-\pi}^{+\pi} a_{k} \cos (k x) \cos (k x) d x \\
& =a_{k} \pi
\end{aligned}
$$

Key idea: - residual $f(x)-a_{0}+\sum_{i} a_{i} \cos (i x)+\sum_{i} b_{i} \sin (i x)$

- weight residual by known function and integrate to find corresponding coefficient

Weighted Residual Technique:

Residual: $\left(L u^{*}-f\right)=\left(L\left(\sum_{i}^{N} c_{i} \phi_{i}\right)-f\right)$
Weighted Residual $=\left(L\left(\sum_{i}^{N} C_{i} \phi_{i}\right)-f\right) \quad \phi_{k}$
Equation for $k^{\text {th }}$ unknown: $\int_{\Omega} \phi_{k} *\left(L\left(\sum_{i}^{N} C_{i} \phi_{i}\right)-f\right) d V=0 \Rightarrow$
If the differential equation is linear:

$$
C_{1} \int_{\Omega^{k}} \phi * L \phi_{1} d V+\ldots .+C_{N} \int_{\Omega^{k}} \phi * L \phi_{N} d V=\int_{\Omega^{\prime}} \phi_{k} f d V
$$

This system can be written as

$$
\mathrm{K} \mathrm{c}=\mathrm{b} \text { where }
$$

$$
K(i, j)=\int_{\Omega_{i}} \phi_{i} L L \phi_{j} d V \quad b(i)=\int_{\Omega} \phi_{i} f d V
$$

Key insight: Calculus problem of solving pde is converted to linear algebra problem of solving $\mathrm{K} \mathrm{c}=\mathrm{b}$ where K is sparse

Solving system of linear algebraic equations:

- K c = b
- Orders of magnitude for realistic problems
- large (~ 10 million unknowns) (roughly equal to number of mesh points)
- sparse (~ 100 non-zero entries per row)
(roughly equal to connectivity of a point)
- same K, many b's in some problems
- Algorithms:
- iterative methods (J acobi, conjugate gradient, GMRES)

```
start with an initial approximation to solution
and keep refining it till you get close enough
```

- factorization methods (LU,Cholesky,QR)

```
factorize K into LU where L is lower triangular and U is upper triangular
    LUc=b
    Solve for c by solving two triangular systems
```

Jacobi: a (slow) iterative solver
Example:

$$
\begin{aligned}
& 4 x+2 y=8 \\
& 3 x+4 y=11
\end{aligned}
$$

Iterative system:

$$
\begin{array}{r}
x_{n+1}=\left(8-2 y_{n}\right) / 4 \\
y_{n+1}=\left(11-3 x_{n}\right) / 4
\end{array}
$$

n	1	2	3	4	5	6	7	8	
-	-	-	-	-	-	-	-	-	
x	0	2	0.625	1.375	0.8594	1.1406	0.9473	1.0527	\ldots
$=$									
y	0	2.75	1.250	2.281	1.7188	2.1055	1.8945	2.0396	\ldots

Matrix view of Jacobi Iteration

Iterative method for solving linear systems $A x=b$
Jacobi method: $\quad M^{*} X_{k+1}=(M-A)^{*} X_{k}+b \quad(M$ is $\operatorname{DIAGONAL}(A))$

Matrix-vector product: $\mathrm{O}\left(\mathrm{N}^{2}\right)$ work
SAXPY, Inner product: $\mathrm{O}(\mathrm{N})$ work
Most of the time is spent in matrix-vector product.
Lesson for software systems people: optimize MVM

Reality check:

- Jacobi is a very old method of solving linear systems iteratively.
- More modern methods: conjugate gradient (CG), GMRES, etc. converge faster in most cases.
- However, the structure of these algorithms is similar: MVM is the key operation.
- Major area of research in numerical analysis: speeding up iterative algorithms further by preconditioning.

Tangential Discussion

- Calculus problem $L u=f \Rightarrow$ linear algebra problem $K c=b$.
- In some problems, we need to solve for multiple variables at each mesh point (temperature, pressure, velocity etc.) $=>$ solve many linear equations with same K, different b 's.
- This is viewed as matrix equation $K C=B$ where C and B are matrices.
- Algorithms for solving single system can be used to solve multiple systems as well.
- Key computation in iterative methods: matrix-matrix multiplication (MMM) rather than matrix-vector multiplication (MVM).
- Non-linear pde's lead to non-linear algebraic systems which are solved iteratively (Newton's method etc.). Key computation: MMM or MVM.

Computational Requirements

Let us estimate storage and time requirements.

- Assume 10^{6} mesh points (rows/columns of A)
- Assume iterative solver needs 100 iterations to converge
- Assume simulation runs for 1000 time steps.

One MVM requires roughly 10^{12} flops
$=>$
Overall simulation requires 10^{17} flops and 10^{12} bytes of storage!
Can we do better?

1-D case

Structure of the K matrix for any pde: $\mathrm{K}[i, j]$ is 0 if ϕ_{i} and ϕ_{j} do not overlap! For our example, K is
$\left[\begin{array}{lllll}x & x & 0 & 0 & 0 \\ x & x & x & 0 & 0 \\ 0 & x & x & x & 0 \\ 0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x\end{array}\right]$

Half the entries are zero!
$\begin{array}{lllll}0 & 0 & x & x & x \\ 0 & 0 & 0 & x & x\end{array} \quad$ In 2-D and 3-D, an even larger percentage of matrix is zero!
Typical 3-D numbers: $10^{\wedge} 6$ rows but only 100-500 non-zeros per row!
Matrix is sparse.

Exploiting sparsity

Store sparse matrices in special formats to avoid storing zeros
$=>$ storage costs are reduced!
Avoid computing with zeros when working with sparse matrices.
$=>$ MFlops needs are reduced!
Question: How do we represent sparse matrices and how do we compute with them?

Three Sparse Matrix Representations

CCS

Co-ordinate Storage

Indexed access to a row

Indexed access to a column

Indexed access to neither rows nor columns

MVM for CRS

for $\mathrm{I}=1$ to N do

$$
\text { for } \mathrm{JJ}=\text { A.rowptr(I) to A.rowptr }(\mathrm{I}+1)-1 \text { do }
$$

$$
\mathrm{Y}(\mathrm{I})=\mathrm{Y}(\mathrm{I})+\mathrm{A} \cdot \operatorname{val}(\mathrm{JJ})^{*} \mathrm{X}(\mathrm{~A} \cdot \operatorname{column}(\mathrm{JJ}))
$$

od
od
MVM for Co-ordinate storage for $\mathrm{P}=1$ to NZ do $\mathrm{Y}(\mathrm{A} \cdot \operatorname{row}(\mathrm{P}))=\mathrm{Y}(\mathrm{A} \cdot \operatorname{row}(\mathrm{P}))+\mathrm{A} \cdot \operatorname{val}(\mathrm{P})^{*} \mathrm{X}(\mathrm{A} \cdot \operatorname{column}(\mathrm{P}))$ od

Sparse matrix computations introduce subscripts with indirection.

Computational Requirements with sparse matrices

- Assume 10^{6} mesh points (rows/columns of A).
- Assume roughly 100 non-zeros per row.
- Assume iterative solver needs 100 iterations to converge.
- Assume simulation runs for 1000 time steps.

One MVM requires roughly 10^{8} flops
$=>$
Overall simulation requires 10^{13} flops and 10^{8} bytes of storage!
This is roughly 100 seconds on a 100 Gflop supercomputer.
Doable!

Flow-chart of Adaptive Finite-element Simulation of Fracture

Summary

- Computational science applications: solving pde's or pushing particles
- PDE's are solved using approximate techniques like fe method
- Time-consuming part: solving large linear algebraic systems
- Two approachs: iterative methods and direct (factorization) methods
- Key operations in iterative methods:

Basic Linear Algebra Subroutines (BLAS)

- Level-1 BLAS: inner-product of vectors, saxpy
- Level-2 BLAS: matrix-vector product, triangular-solve
- Level-3 BLAS: matrix-matrix product, triangular-solve with multiple right-hand-sides
- Important to exploit sparsity in matrix
- Exploiting sparsity complicates code.

