
Introduction to OCaml

Evan Danaher

Department of Computer Science
Cornell University

CS 6110
28 January 2010

Minor tweaks to Jed Liu’s tutorial
which was

based on CS 3110 course notes
and an SML tutorial by Mike George

Evan Danaher Introduction to OCaml 1

white

Installing OCaml

I Linux:
yum install ocaml

apt-get install ocaml

emerge dev-lang/ocaml

I Windows:
http://caml.inria.fr/ocaml/release.en.html

Get the Microsoft-based native Win32 port

I OCaml toplevel system demo

Evan Danaher Introduction to OCaml 1

http://caml.inria.fr/ocaml/release.en.html

Declaring Variables

let sixEleven = 6110

(* A local variable declaration *)

let fortyTwo =

let six = 6

and nine = 7

in six * nine

Evan Danaher Introduction to OCaml 2

Base Types

let x : int = -7

let y : char = ’a’

let z : string = "moo"

let w : float = 3.14159

let v : bool = true

I OCaml has type inference

I Type declarations are optional in many places

I But having them makes it much easier to
debug type errors!

Evan Danaher Introduction to OCaml 3

Tuples and Datatypes

(* Tuples (a.k.a. product types) *)

let t1 : int * int = (3, 5)

let t2 : string * bool * char = ("moo", true, ’q’)

let t3 : unit = () (* The empty tuple *)

(* A simple datatype (like enum or union) *)

type suit = Spades | Diamonds | Hearts | Clubs

let c : suit = Clubs

Evan Danaher Introduction to OCaml 4

More Datatypes

(* Datatype constructors can carry values *)

(* and be recursive (and look like CFGs) *)

type var = string

type exp = Var of var

| Lam of var * exp

| App of exp * exp

let id : exp = Lam ("x", Var "x")

let w : exp =

App (Lam ("x", App (Var "x", Var "x")),

Lam ("x", App (Var "x", Var "x")))

I Can build up tuples and datatypes...
I How to break them down and actually use

them?
Evan Danaher Introduction to OCaml 5

Pattern Matching

let t1 : int * int = ...

(* Binds two variables at once *)

let (a, b) = t1

(* Use _ for "don’t care" *)

let (_, b) = t1

(* Can match constants too *)

let (a, 5) = t1

I OCaml warns about non-exhaustive patterns

Evan Danaher Introduction to OCaml 6

More Pattern Matching

let suitname : string =

match c with

Spades -> "spades" | Diamonds -> "diamonds"

| Hearts -> "hearts" | Clubs -> "clubs"

(* Base types are just special datatypes *)

(* and can also be pattern-matched *)

let b : bool = ...

let x : int =

match b with

true -> 1

| false -> 0

(* Says the same thing and is better style: *)

let x : int = if b then 1 else 0

Evan Danaher Introduction to OCaml 7

More Pattern Matching

let suitname : string =

match c with

Spades -> "spades" | Diamonds -> "diamonds"

| Hearts -> "hearts" | Clubs -> "clubs"

(* Base types are just special datatypes *)

(* and can also be pattern-matched *)

let b : bool = ...

let x : int =

match b with

true -> 1

| false -> 0

(* Says the same thing and is better style: *)

let x : int = if b then 1 else 0

Evan Danaher Introduction to OCaml 7

A Warning about Pattern Matching

(* What does this evaluate to? *)

let pair = (42, 611)

let x = 611

match pair with

(x, 611) -> 0

| (42, x) -> 1

| _ -> 2

I Patterns can refer to datatype constructors and
constants

I But cannot refer to pre-existing variables

I They can only declare new variables

Evan Danaher Introduction to OCaml 8

A Warning about Pattern Matching

(* What does this evaluate to? *)

let pair = (42, 611)

let x = 611

match pair with

(x, 611) -> 0

| (42, x) -> 1

| _ -> 2

I Patterns can refer to datatype constructors and
constants

I But cannot refer to pre-existing variables

I They can only declare new variables

Evan Danaher Introduction to OCaml 8

Functions

(* A variable with a function value *)

let square : int -> int =

fun (x:int) -> x * x (* anonymous fun! *)

(* Same thing, more succinct *)

let square (x:int) : int = x * x

Evan Danaher Introduction to OCaml 9

Recursive Functions

let rec fact (x:int) : int =

if x = 0 then 1

else x * (fact (x-1))

(* Mutually recursive functions *)

let rec isOdd (x:int) : bool =

x != 0 && isEven (x-1)

and isEven (x:int) : bool =

x = 0 || isOdd (x-1)

Evan Danaher Introduction to OCaml 10

More Functions

(* How many arguments does this take? *)

let rec gcd (a, b) : int =

if b = 0 then a

else gcd (b, a mod b)

(* More explicitly: *)

let rec gcd (p : int * int) : int =

match p with (a, b) ->

if b = 0 then a

else gcd (b, a mod b)

Evan Danaher Introduction to OCaml 11

More Functions

(* How many arguments does this take? *)

let rec gcd (a, b) : int =

if b = 0 then a

else gcd (b, a mod b)

(* More explicitly: *)

let rec gcd (p : int * int) : int =

match p with (a, b) ->

if b = 0 then a

else gcd (b, a mod b)

Evan Danaher Introduction to OCaml 11

Curried Functions

let rec gcd (a, b) : int =

if b = 0 then a

else gcd (b, a mod b)

(* Preferred style: *)

let rec gcd’ (a:int) (b:int) : int =

if b = 0 then a

else gcd’ b (a mod b)

(* Has type int -> int -> int *)

(* More explicitly: *)

let rec gcd’ (a:int) : int -> int =

fun (b:int) ->

if b = 0 then a

else gcd’ b (a mod b)

Evan Danaher Introduction to OCaml 12

A Minor Tangent...

I We have
gcd : int * int -> int

gcd’: int -> (int -> int)

I Through currying and uncurrying, these types
are somehow “equivalent”

I Squint hard and you might see logical
propositions...

A ∧ B =⇒ C
A =⇒ (B =⇒ C)

...which are logically equivalent!

Evan Danaher Introduction to OCaml 13

Local Declarations (including local functions)

(* Newton’s method of approximation *)

let rec newton f guess : float =

let goodEnough = abs float (f guess) < 0.0001

in

if goodEnough then guess

else

let

f’ x = (f x -. f (x -. 0.0001)) /. 0.0001

in

let newGuess =

guess -. (f guess) /. (f’ guess)

in newton f newGuess

Evan Danaher Introduction to OCaml 14

Polymorphism

(* What is this function’s type? *)

let id x = x

(* More explicitly *)

let id (x : ’a) : ’a = x

(* A polymorphic datatype *)

type ’a lst =

Empty

| Cons of (’a * ’a lst)

let rec map (f:’a -> ’b) (l:’a lst) : ’b lst =

match l with

Empty -> Empty

| Cons (hd, tl) -> Cons (f hd, map f tl)

Evan Danaher Introduction to OCaml 15

Polymorphism

(* What is this function’s type? *)

let id x = x

(* More explicitly *)

let id (x : ’a) : ’a = x

(* A polymorphic datatype *)

type ’a lst =

Empty

| Cons of (’a * ’a lst)

let rec map (f:’a -> ’b) (l:’a lst) : ’b lst =

match l with

Empty -> Empty

| Cons (hd, tl) -> Cons (f hd, map f tl)

Evan Danaher Introduction to OCaml 15

Lists

I OCaml has lists built-in
I [] is the empty list
I :: is the cons operator
I @ is the append operator
I [1; 2; 3] is a three-element list

(note the semicolons)

let rec reverse (l : ’a list) : ’a list =

match l with

[] -> []

| hd :: tl -> (reverse tl) @ [hd]

I A fancy list pattern:
[a; (42, [611]); (b, c::d)]

Evan Danaher Introduction to OCaml 16

Putting It All Together

I Demo: #use "fv.ml"

Evan Danaher Introduction to OCaml 17

Summary

I Types, tuples, datatypes

I Pattern matching

I Higher-order functions, anonymous functions,
currying

I Polymorphism

Evan Danaher Introduction to OCaml 18

Resources

I CS 3110 notes
http://www.cs.cornell.edu/courses/cs3110/2008fa/

I Objective CAML Tutorial
http://www.ocaml-tutorial.org/

I SML vs. OCaml
http://www.mpi-sws.org/ rossberg/sml-vs-ocaml.html

I OCaml manual
http://caml.inria.fr/pub/docs/manual-ocaml/

Evan Danaher Introduction to OCaml 19

http://www.cs.cornell.edu/courses/cs3110/2008fa/
http://www.ocaml-tutorial.org/
http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html
http://caml.inria.fr/pub/docs/manual-ocaml/

