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Installing OCaml

I Linux:
yum install ocaml

apt-get install ocaml

emerge dev-lang/ocaml

I Windows:
http://caml.inria.fr/ocaml/release.en.html

Get the Microsoft-based native Win32 port

I OCaml toplevel system demo
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Declaring Variables

let sixEleven = 6110

(* A local variable declaration *)

let fortyTwo =

let six = 6

and nine = 7

in six * nine
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Base Types

let x : int = -7

let y : char = ’a’

let z : string = "moo"

let w : float = 3.14159

let v : bool = true

I OCaml has type inference

I Type declarations are optional in many places

I But having them makes it much easier to
debug type errors!
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Tuples and Datatypes

(* Tuples (a.k.a. product types) *)

let t1 : int * int = (3, 5)

let t2 : string * bool * char = ("moo", true, ’q’)

let t3 : unit = () (* The empty tuple *)

(* A simple datatype (like enum or union) *)

type suit = Spades | Diamonds | Hearts | Clubs

let c : suit = Clubs
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More Datatypes

(* Datatype constructors can carry values *)

(* and be recursive (and look like CFGs) *)

type var = string

type exp = Var of var

| Lam of var * exp

| App of exp * exp

let id : exp = Lam ("x", Var "x")

let w : exp =

App (Lam ("x", App (Var "x", Var "x")),

Lam ("x", App (Var "x", Var "x")))

I Can build up tuples and datatypes...
I How to break them down and actually use

them?
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Pattern Matching

let t1 : int * int = ...

(* Binds two variables at once *)

let (a, b) = t1

(* Use _ for "don’t care" *)

let (_, b) = t1

(* Can match constants too *)

let (a, 5) = t1

I OCaml warns about non-exhaustive patterns
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More Pattern Matching

let suitname : string =

match c with

Spades -> "spades" | Diamonds -> "diamonds"

| Hearts -> "hearts" | Clubs -> "clubs"

(* Base types are just special datatypes *)

(* and can also be pattern-matched *)

let b : bool = ...

let x : int =

match b with

true -> 1

| false -> 0

(* Says the same thing and is better style: *)

let x : int = if b then 1 else 0
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A Warning about Pattern Matching

(* What does this evaluate to? *)

let pair = (42, 611)

let x = 611

match pair with

(x, 611) -> 0

| (42, x) -> 1

| _ -> 2

I Patterns can refer to datatype constructors and
constants

I But cannot refer to pre-existing variables

I They can only declare new variables
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Functions

(* A variable with a function value *)

let square : int -> int =

fun (x:int) -> x * x (* anonymous fun! *)

(* Same thing, more succinct *)

let square (x:int) : int = x * x
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Recursive Functions

let rec fact (x:int) : int =

if x = 0 then 1

else x * (fact (x-1))

(* Mutually recursive functions *)

let rec isOdd (x:int) : bool =

x != 0 && isEven (x-1)

and isEven (x:int) : bool =

x = 0 || isOdd (x-1)
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More Functions

(* How many arguments does this take? *)

let rec gcd (a, b) : int =

if b = 0 then a

else gcd (b, a mod b)

(* More explicitly: *)

let rec gcd (p : int * int) : int =

match p with (a, b) ->

if b = 0 then a

else gcd (b, a mod b)
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Curried Functions

let rec gcd (a, b) : int =

if b = 0 then a

else gcd (b, a mod b)

(* Preferred style: *)

let rec gcd’ (a:int) (b:int) : int =

if b = 0 then a

else gcd’ b (a mod b)

(* Has type int -> int -> int *)

(* More explicitly: *)

let rec gcd’ (a:int) : int -> int =

fun (b:int) ->

if b = 0 then a

else gcd’ b (a mod b)
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A Minor Tangent...

I We have
gcd : int * int -> int

gcd’: int -> (int -> int)

I Through currying and uncurrying, these types
are somehow “equivalent”

I Squint hard and you might see logical
propositions...

A ∧ B =⇒ C
A =⇒ (B =⇒ C )

...which are logically equivalent!
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Local Declarations (including local functions)

(* Newton’s method of approximation *)

let rec newton f guess : float =

let goodEnough = abs float (f guess) < 0.0001

in

if goodEnough then guess

else

let

f’ x = (f x -. f (x -. 0.0001)) /. 0.0001

in

let newGuess =

guess -. (f guess) /. (f’ guess)

in newton f newGuess
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Polymorphism

(* What is this function’s type? *)

let id x = x

(* More explicitly *)

let id (x : ’a) : ’a = x

(* A polymorphic datatype *)

type ’a lst =

Empty

| Cons of (’a * ’a lst)

let rec map (f:’a -> ’b) (l:’a lst) : ’b lst =

match l with

Empty -> Empty

| Cons (hd, tl) -> Cons (f hd, map f tl)
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Lists

I OCaml has lists built-in
I [] is the empty list
I :: is the cons operator
I @ is the append operator
I [1; 2; 3] is a three-element list

(note the semicolons)

let rec reverse (l : ’a list) : ’a list =

match l with

[] -> []

| hd :: tl -> (reverse tl) @ [hd]

I A fancy list pattern:
[a; (42, [611]); (b, c::d)]
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Putting It All Together

I Demo: #use "fv.ml"
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Summary

I Types, tuples, datatypes

I Pattern matching

I Higher-order functions, anonymous functions,
currying

I Polymorphism
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Resources

I CS 3110 notes
http://www.cs.cornell.edu/courses/cs3110/2008fa/

I Objective CAML Tutorial
http://www.ocaml-tutorial.org/

I SML vs. OCaml
http://www.mpi-sws.org/ rossberg/sml-vs-ocaml.html

I OCaml manual
http://caml.inria.fr/pub/docs/manual-ocaml/

Evan Danaher Introduction to OCaml 19

http://www.cs.cornell.edu/courses/cs3110/2008fa/
http://www.ocaml-tutorial.org/
http://www.mpi-sws.org/~rossberg/sml-vs-ocaml.html
http://caml.inria.fr/pub/docs/manual-ocaml/

