
Lecture �� Union�Find

The union��nd data structure is motivated by Kruskal�s minimum spanning
tree algorithm �Algorithm �	��� in which we needed two operations on disjoint
sets of vertices


� determine whether vertices u and v are in the same set�

� form the union of disjoint sets A and B	

The data structure provides two operations from which the above two
operations can be implemented


� �nd�v�� which returns a canonical element of the set containing v	 We
ask if u and v are in the same set by asking if �nd�u� $ �nd�v�	

� union�u� v�� which merges the sets containing the canonical elements u
and v	

To implement these operations e�ciently� we represent each set as a tree
with data elements at the vertices	 Each element u has a pointer parent �u�
to its parent in the tree	 The root serves as the canonical element of the set	

To e�ect a union�u� v�� we combine the two trees with roots u and v by
making u a child of v or vice�versa	 To do a �nd�u�� we start at u and follow
parent pointers� traversing the path up to the root of the tree containing u�
which gives the canonical element	

To improve performance� we will use two heuristics


��



Lecture �� Union
Find ��

� When merging two trees in a union� always make the root of the
smaller tree a child of the root of the larger	 We maintain with each
vertex u the size of the subtree rooted at u� and update whenever we
do a union	

� After �nding the root v of the tree containing u in a �nd�u�� we
traverse the path from u to v one more time and change the parent
pointers of all vertices along the path to point directly to v	 This
process is called path compression	 It will pay o� in subsequent �nd
operations� since we will be traversing shorter paths	

Let us start with some basic observations about these heuristics	 Let �
be a sequence of m union and �nd operations starting with n singleton sets	
Consider the execution of � both with and without path compression	 In either
case we combine two smaller sets to form a larger in each union operation	
Observe that the collection of sets at time t is the same with or without path
compression� and the trees have the same roots� although the trees will in
general be shorter and bushier with path compression	 Observe also that u
becomes a descendant of v at time t with path compression if and only if u
becomes a descendant of v at time t without path compression	 However�
without path compression� once u becomes a descendant of v� it remains a
descendant of v forever� but with path compression� it might later become a
non�descendant of v	

���� Ackermann�s Function

The two heuristics will allow a sequence of union and �nd operations to be
performed in O��m" n���n�� time� where ��n� is the inverse of Ackermann�s
function	 Ackermann�s function is a famous function that is known for its
extremely rapid growth	 Its inverse ��n� grows extremely slowly	 The texts
��� ���� give inequivalent de�nitions of Ackermann�s function� and in fact
there does not seem to be any general agreement on the de�nition of �the 
Ackermann�s function� but all these functions grow at roughly the same rate	
Here is yet another de�nition that grows at roughly the same rate


A��x� $ x " �

Ak���x� $ Ax
k�x�

where Ai
k is the i�fold composition of Ak with itself


Ai
k $ Ak � � � � � Ak
 �z �

i

or more accurately�

A�
k $ the identity function



�� Lecture �� Union
Find

Ai��
k $ Ak � Ai

k �

In other words� to compute Ak���x�� start with x and apply Ak x times	 It is
not hard to show by induction that Ak is monotone in the sense that

x � y � Ak�x� � Ak�y�

and that for all x� x � Ak�x�	
As k grows� these functions get extremely huge extremely fast	 For x $ �

or �� the numbers Ak�x� are small	 For x � ��

A��x� $ x" �

A��x� $ Ax
��x� $ �x

A��x� $ Ax
��x� $ x�x � �x

A��x� $ Ax
��x� � ��

��
��
�


 �z �
x

$ � � x

A��x� $ Ax
��x� � � � �� � � � � � �� � �� � � ��
 �z �

x

$ � �� x

			

For x $ �� the growth of Ak��� as a function of k is beyond comprehension	
Already for k $ �� the value of A���� is larger than the number of atomic
particles in the known universe or the number of nanoseconds since the Big
Bang	

A���� $ �

A���� $ �

A���� $ �

A���� $ ��� $ ����

A���� � � � ���� $ ��
��
��
�


 �z �
����

We de�ne a unary function that majorizes all the Ak �i�e�� grows asymp�
totically faster than all of them�


A�k� $ Ak���

and call it Ackermann�s function	 This function grows asymptotically faster
than any primitive recursive function� since it can be shown that all primitive
recursive functions are bounded almost everywhere by one of the functions Ak	
The primitive recursive functions are those computed by a simple pascal�like
programming language over the natural numbers with for loops but no while



Lecture �� Union
Find ��

loops	 The level k corresponds roughly to the depth of nesting of the for loops
�
��	

The inverse of Ackermann�s function is

��n� $ the least k such that A�k� � n

which for all practical purposes is �	 We will show next time that with our
heuristics� any sequence ofm union and �nd operations take at most O��m"
n���n�� time� which is not quite linear but might as well be for all practical
purposes	 This result is due to Tarjan �see ������	 A corresponding lower
bound for pointer machines with no random access has also been established
���� �
�	



Lecture �� Analysis of Union�Find

Recall from last time the heuristics


� In a union� always merge the smaller tree into the larger	

� In a �nd� use path compression	

We made several elementary observations about these heuristics


� the contents of the trees are the same with or without path compression�

� the roots of the trees are the same with or without path compression�

� a vertex u becomes a descendant of v at time t with path compression if
and only if it does so without path compression	 With path compression�
however� u may at some later point become a non�descendant of v	

Recall also the de�nitions of the functions Ak and �


A��x� $ x" �

Ak���x� $ Ax
k�x�

��n� $ least k such that Ak��� � n ����

and that ��n� � � for all practical values of n	

��



Lecture �� Analysis of Union
Find �	

���� Rank of a Node

As in the last lecture� let � be a sequence of m union and �nd instructions
starting with n singleton sets	 Let Tt�u� denote the subtree rooted at u at
time t in the execution of � without path compression� and de�ne the rank of
u to be

rank �u� $ � " height �Tm�u�� � ����

where height �T � is the height of T or length of the longest path in T 	 In other
words� we execute � without path compression� then �nd the longest path
in the resulting tree below u	 The rank of u is de�ned to be two more than
the length of this path	 �Beware that our rank is two more than the rank as
de�ned in ��� ����	 This is for technical reasons� the ��s in ���� and ���� are
related	�

As long as u has no parent� the height of Tt�u� can still increase� since
other trees can be merged into it� but once u becomes a child of another
vertex� then the tree rooted at u becomes �xed� since no trees will ever again
be merged into it	 Also� without path compression� the height of a tree can
never decrease	 It follows that if u ever becomes a descendant of v �with or
without path compression�� say at time t� then for all s � t the height of Ts�u�
is less than the height of Ts�v�� therefore

rank �u� � rank �v� � ��
�

The following lemma captures the intuition that if we always merge smaller
trees into larger� the trees will be relatively balanced	

Lemma ����

jTt�u�j � �height �Tt�u�� � ����

Proof� The proof is by induction on t� using the fact that we always
merge smaller trees into larger	 For the basis� we have T��u� $ fug� thus
height �T��u�� $ � and jT��u�j $ �� so ���� holds at time �	 If ���� holds
at time t and the height of the tree does not increase in the next step� i�e�
if height �Tt���u�� $ height �Tt�u��� then ���� still holds at time t " �� since
jTt���u�j � jTt�u�j	 Finally� if height �Tt���u�� � height �Tt�u��� then the
instruction executed at time t must be a union instruction that merges a tree
Tt�v� into Tt�u�� making v a child of u in Tt���u�	 Then

height �Tt�v�� $ height �Tt���v�� $ height �Tt���u��
 � �

By the induction hypothesis�

jTt�v�j � �height �Tt�v�� �



�� Lecture �� Analysis of Union
Find

Since we always merge smaller trees into larger�

jTt�u�j � jTt�v�j �
Therefore

jTt���u�j $ jTt�u�j" jTt�v�j
� �height �Tt�v�� " �height �Tt�v��

$ �height �Tt�v����

$ �height �Tt���u�� �

�

Lemma ���� The maximum rank after executing � is at most blognc " ��

Proof� By Lemma ��	��

n � jTm�u�j � �height �Tm�u�� � �rank �u��� �

so

blognc � rank �u�
 � �

�

Lemma ���	

jfu j rank �u� $ rgj � n

�r��
�

Proof� If rank �u� $ rank �v�� then by ��
� Tm�u� and Tm�v� are disjoint	
Thus

n � j 	
rank �u�
r

Tm�u�j

$
X

rank �u�
r

jTm�u�j

� X
rank �u�
r

�r�� by Lemma ��	�

$ jfu j rank �u� $ rgj � �r�� �
�

Now consider the execution of � with path compression	 We will focus
on the distance between u and parent �u� as measured by the di�erence in
their ranks� and how this distance increases due to path compression	 Recall
that rank �u� is �xed and independent of time� however� rank �parent �u�� can



Lecture �� Analysis of Union
Find ��

change with time because the parent of u can change due to path compression	
By ��
�� this value can only increase	

Speci�cally� we consider the following conditions� one for each k


rank �parent �u�� � Ak�rank �u�� � ����

De�ne


�u� $ the greatest k for which ���� holds	

The value of 
�u� is time�dependent and can increase with time due to path
compression	 Note that 
�u� exists if u has a parent� since by ��
��

rank �parent �u�� � rank �u� " � $ A��rank �u��

at the very least	
For n � �� the maximum value 
�u� can take on is ��n� 
 �� since if


�u� $ k�

n � blognc " �

� rank �parent �u�� by Lemma ��	�

� Ak�rank �u��

� Ak��� �

therefore

��n� � k �

���� Analysis

Each union operation requires constant time� thus the time for all union
instructions is O�m�	

Each instruction �nd�u� takes time proportional to the length of the path
from u to v� where v is the root of the tree containing u	 The path is traversed
twice� once to �nd v and then once again to change all the parent pointers
along the path to point to v	 This amounts to constant time �say one time
unit� per vertex along the path	 We charge the time unit associated such a
vertex x as follows


� If x has an ancestor y on the path such that 
�y� $ 
�x�� then charge
x�s time unit to x itself	

� If x has no such ancestor� then charge x�s time unit to the �nd instruc�
tion	



�� Lecture �� Analysis of Union
Find

Let us now tally separately the total number of time units apportioned to
the vertices and to the �nd instructions and show that in each case the total
is O��m" n���n��	

There are at most ��n� time units charged to each �nd instruction� at
most one for each of the ��n� possible values of 
� since for each such value k
only the last vertex x on the path with 
�x� $ k gets its time unit charged to
the �nd instruction	 Since there are at most m �nd instructions in all� the
total time charged to �nd instructions is O�m��n��	

Let us now count all the charges to a particular vertex x over the course
of the entire computation	 For such a charge occurring at time t� x must have
an ancestor y such that 
�y� $ 
�x� $ k for some k	 Then at time t�

rank �parent �x�� � Ak�rank �x��

rank �parent �y�� � Ak�rank �y�� �

Suppose that in fact

rank �parent �x�� � Ai
k�rank �x�� � i � � �

Let v be the last vertex on the path	 Then at time t�

rank �v� � rank �parent �y��

� Ak�rank �y��

� Ak�rank �parent �x���

� Ak�A
i
k�rank �x���

� Ai��
k �rank �x�� �

and since v is the new parent of x at time t " �� we have at time t" � that

rank �parent �x�� � Ai��
k �rank �x�� �

Thus at most rank �x� such charges can be made against x before

rank �parent �x�� � A
rank �x�
k �rank �x��

$ Ak���rank �x�� �

and at that point


�x� � k " � �

Thus after at most rank �x� such charges against x� 
�x� increases by at least
one	 Since 
�x� can increase only ��n� 
 � times� there can be at most
rank �x���n� such charges against x in all	 By Lemma ��	�� there are at
most

r��n�
n

�r��
$ n��n�

r

�r��



Lecture �� Analysis of Union
Find ��

charges against vertices of rank r	 Summing over all values of r� we obtain
the following bound on all charges to all vertices


�X
r
�

n��n�
r

�r��
$ n��n� �

�X
r
�

r

�r��

$ �n��n� �

We have shown

Theorem ���� A sequence of m union and �nd operations starting with n
singleton sets takes time at most O��m" n���n���


