
CS611 Lecture 11 Computing with Closures 22 September 2006
Lecturer: Dexter Kozen

In implementations of ML, Scheme, or other functional languages with static scoping, functions λx. e
are paired with the environments ρ in which they were defined. The pair 〈λx. e, ρ〉 is called a closure. The
environment ρ tells how to evaluate the free variables of λx. e. Usually the environment is a partial function
from variables to values that is defined on (at least) all the free variables of λx. e. It is obtained from the
syntactic context in which λx. e appears.

When a function λx. e is called on some argument a, the argument is bound to the formal parameter x,
and this new binding is appended to the environment ρ in the closure, then the body is evaluated in that
environment.

The process of converting a function to take an environment as an extra argument is called closure
conversion. In this lecture we will see why this works by proving a theorem that shows how closures
adequately represent static scoping.

Closures and Environments

Formally, a value of λ-CBV is a closed CBV-irreducible λ-term, which is just a closed term of the form
λx. e. Let Val denote the set of λ-CBV values, and let L denote the set of all closed λ-terms (not necessarily
CBV-irreducible).

Now we define a new language whose values are closures 〈λx. e, ρ〉, where λx. e is permitted to have free
variables, provided they are all in the domain of ρ. Because the definitions of closures and environments
depend on each other, we must define them by mutual induction. We denote the set of closures and the set
of environments by Cl and Env, respectively. They are defined to be the smallest sets such that

Env = {partial functions ρ : Var → Cl with finite domain},
Cl = {〈λx. e, ρ〉 | ρ ∈ Env, FV(λx. e) ⊆ dom ρ}.

This definition may seem circular, but actually it does have a basis. We have ⊥ ∈ Env, where ⊥ is the null
environment with domain ∅, therefore 〈λx. e, ⊥〉 ∈ Cl, where λx. e is closed. Once we know that Cl and
Env are nonempty, we can form some nonnull environments ρ : Var → Cl and closures 〈λx. e, ρ〉 where
λx. e is not closed, provided ρ is defined on all free variables of λx. e. This allows us to form even more
closures and environments, and so on. After countably many steps, we reach a fixpoint.

Permitting environments to be partial functions is essential, but the restriction to finite domain is not.
We need to allow partial functions so that the induction will get off the ground, i.e. Cl 6= ∅. The restriction
to finite domain makes the monotone map in the definition finitary, which ensures that the construction
closes at ω. Without this restriction we would have to use transfinite induction.

More concretely, define

Cl0
4
= ∅

Envn
4
= {partial functions ρ : Var → Cln with finite domain}

Cln+1
4
= {〈λx. e, ρ〉 | ρ ∈ Envn, FV(λx. e) ⊆ dom ρ}

Env
4
=

⋃
n≥0

Envn

Cl
4
=

⋃
n≥0

Cln.

Note that

Env0 = {⊥}
Cl1 = {〈λx. e, ⊥〉 | λx. e is closed}.

1



Iterated Substitution

Let C denote the set of pairs 〈e, ρ〉, where e is any λ-term (not necessarily closed or CBV-irreducible) and ρ
an environment such that FV(e) ⊆ dom ρ. Every such pair gives rise to a closed λ-term obtained by “iterated
substitution”. This is given by a map F : C → L defined inductively as follows:

F (〈e, ρ〉) 4
= e{F (ρ(y))/y, y ∈ dom ρ}.

Again, this may seem like a circular definition, but it’s not.

Lemma F is well-defined on C and takes values in L. On inputs in Cl, F takes values in Val.

Proof. Induction on the stage of definition of ρ ∈ Env. Consider first 〈e, ρ〉 ∈ C with ρ ∈ Env0. Then
ρ = ⊥, e is closed, and

F (〈e, ⊥〉) 4
= e{F (⊥(y))/y, y ∈ dom⊥} = e.

If ρ ∈ Envn+1, then ρ takes values in Cln+1. Then for all y ∈ dom ρ, ρ(y) = 〈λx. d, σ〉 for some σ ∈ Envn,
FV(λx. d) ⊆ dom σ. By the induction hypothesis, F (ρ(y)) ∈ L. Then

F (〈e, ρ〉) = e{F (ρ(y))/y, y ∈ dom ρ} ∈ L.

F takes values in Val on inputs in Cl, because

F (〈λx. e, ρ〉) = (λx. e){F (ρ(y))/y, y ∈ dom ρ},

which is closed and CBV-irreducible, thus a value of λ-CBV. �

λ-Cl

The terms of λ-Cl consist of the elements of C. The values of λ-Cl are elements of Cl. We now give a set of
evaluation rules defining a big-step SOS for a binary relation ⇓ ⊆ C×Cl. The statement 〈e, ρ〉 ⇓ v should
be interpreted as: When e is evaluated in the environment ρ, the result is v. Given this informal meaning,
these rules below reflect the usual evaluation rules for functional expressions in Scheme or ML.

〈x, σ〉 ⇓ σ(x) 〈λx. e, ρ〉 ⇓ 〈λx. e, ρ〉 〈e1, σ〉 ⇓ 〈λx. e, τ〉, 〈e2, σ〉 ⇓ u, 〈e, τ [u/x]〉 ⇓ v

〈e1 e2, σ〉 ⇓ v
.

Note that the rule for λ-abstractions is just the identity relation! This rule says that evaluating λx. e in the
environment ρ results in the closure 〈λx. e, ρ〉.

The third rule is the usual rule for evaluation of a function application: to evaluate e1 e2 in the environ-
ment σ, first evaluate the function e1 in environment σ to get a closure 〈λx. e, τ〉, then evaluate the argument
e2 in environment σ, then bind the value of the argument to the formal parameter x in the environment of
the closure τ and evaluate the body of the function in that environment.

By the lemma above, the “iterated substitution” map F translates λ-Cl expressions to λ-CBV expressions
and λ-Cl values to λ-CBV values. The following theorem asserts adequacy of this translation.

Theorem F (〈e, σ〉) ∗−→
cbv

v ⇔ ∃w 〈e, σ〉 ⇓ w ∧ v = F (w).

Proof. (⇐) We wish to show that if 〈e, σ〉 ⇓ w, then F (〈e, σ〉) ∗−→
cbv

F (w). The proof is by induction on

the derivation 〈e, σ〉 ⇓ w.
For the case e = x, we have 〈x, σ〉 ⇓ σ(x). In this case F (〈x, σ〉) = x{F (σ(y))/y, y ∈ dom σ} = F (σ(x)),

so F (〈x, σ〉) ∗−→
cbv

F (σ(x)).

For the case λx. e, we have 〈λx. e, σ〉 ⇓ 〈λx. e, σ〉. In this case F (〈x, σ〉) ∗−→
cbv

F (〈x, σ〉) trivially.

Finally, for the case e1 e2, if 〈e1 e2, σ〉 ⇓ w, for some λx. d, τ , and u, we must have

2



• 〈e1, σ〉 ⇓ 〈λx. d, τ〉;

• 〈e2, σ〉 ⇓ u;

• 〈d, τ [u/x]〉 ⇓ w.

By the induction hypothesis,

• F (〈e1, σ〉) ∗−→
cbv

F (〈λx. d, τ〉);

• F (〈e2, σ〉) ∗−→
cbv

F (u);

• F (〈d, τ [u/x]〉) ∗−→
cbv

F (w).

Under CBV semantics, we have

F (〈e1 e2, σ〉) = F (〈e1, σ〉) F (〈e2, σ〉)
∗−→

cbv
F (〈λx. d, τ〉) F (u)

= (λx. d){F (τ(y))/y, y ∈ dom τ} F (u)
= (λx. d{F (τ(y))/y, y ∈ dom τ, y 6= x}) F (u)
−→

β
d{F (τ [u/x](y))/y, y ∈ dom τ, y 6= x}{F (τ [u/x](x))/x}

= d{F (τ [u/x](y))/y, y ∈ dom τ}
= F (〈d, τ [u/x]〉)
∗−→

cbv
F (w).

(⇒) Suppose F (〈e, σ〉) ∗−→
cbv

v. We proceed by induction on the length of the derivation.

For the case e = x, we have 〈x, σ〉 ⇓ σ(x) and

F (σ(x)) = x{F (σ(y))/y, y ∈ dom σ} = F (〈x, σ〉) ∗−→
cbv

v.

By the lemma, F (σ(x)) ∈ Val, therefore F (σ(x)) = v, so we can take w = σ(x).
For the case λx. e, we have 〈λx. e, σ〉 ⇓ 〈λx. e, σ〉 and

F (〈λx. e, σ〉) = (λx. e){F (σ(y))/y, y ∈ dom σ} ∈ Val,

thus F (〈λx. e, σ〉) = v, so we can take w = 〈λx. e, σ〉.
Finally, for the case e1 e2, we have

F (〈e1 e2, σ〉) = F (〈e1, σ〉) F (〈e2, σ〉) ∗−→
cbv

v.

Under the CBV reduction strategy, the only way this can happen is if

• F (〈e1, σ〉) ∗−→
cbv

λx. d;

• F (〈e2, σ〉) ∗−→
cbv

u;

• d{u/x} ∗−→
cbv

v

for some λx. d and u ∈ Val. These are all shorter derivations than the original derivation F (〈e, σ〉) ∗−→
cbv

v,

so by the induction hypothesis there exist λx. e, ρ, and t ∈ Cl such that

• 〈e1, σ〉 ⇓ 〈λx. e, ρ〉 and F (〈λx. e, ρ〉) = λx. d;

3



• 〈e2, σ〉 ⇓ t and F (t) = u.

Then

λx. d = (λx. e){F (ρ(y))/y, y ∈ dom ρ}
= λx. (e{F (ρ(y))/y, y ∈ dom ρ, y 6= x}),

therefore d = e{F (ρ(y))/y, y ∈ dom ρ, y 6= x}, and

d{u/x} = e{F (ρ(y))/y, y ∈ dom ρ, y 6= x}{u/x}
= e{F (ρ(y))/y, y ∈ dom ρ, y 6= x}{F (t)/x}
= e{F (ρ[t/x](y))/y, y ∈ dom ρ, y 6= x}{F (ρ[t/x](x))/x}
= e{F (ρ[t/x](y))/y, y ∈ dom ρ}
= F (〈e, ρ[t/x]〉).

By the induction hypothesis, 〈e, ρ[t/x]〉 ⇓ w and F (w) = v for some w, therefore 〈e1 e2, ρ[t/x]〉 ⇓ w. �

4


