
1

CS 611
Advanced Programming Languages

Andrew Myers

Cornell University

Lecture 31

Recursive Domains
8 Nov 00

CS 611 Fall '00 -- Andrew Myers, Cornell University 2

Interpreting types
• Types can define names; need type

environment χ : Type → Domain to define
inductively
��τ�χ gives domain corresponding to τ

��unit�χ = U
��int�χ = Ζ
��X�χ = χ(X)
��τ1*τ2�χ = ��τ1�χ × ��τ2�

��τ1→τ2�χ = ��τ1�χ → ��τ2�⊥
��µX.τ�χ = µD. ��τ�χ[X�D]

Compiler algorithm!

CS 611 Fall '00 -- Andrew Myers, Cornell University 3

• Two implementation options:
1. Represent types syntactically

2. Construct fixed points as cyclical graphs (can
avoid replication: hash)

Recursive types in compilation

Node = µN. array[N*N] * array[N*N]
Edge = µE.(array[E] * array[E]) *

(array[E] * array[E])

×
class Node {

Edge[] outgoing_edges;
Edge[] incoming_edges;

}
class Edge {

Node from;
Node to;

}

Node

×

array

Edge

µ = loop

CS 611 Fall '00 -- Andrew Myers, Cornell University 4

Structural equivalence
• Given T = µX. τ, T ≅ τ{T/X}
µX. X∗X+U ≅ µX. (µX. X∗X+U)∗X+U

≅ µX. X∗(µX. X∗X+U)+U
• Language with explicit fold/unfold:

expression has unique type
• Typical language w/ structural

equivalence: how to decide τ1 ≅ τ2 ?
• Idea: two types equivalent if infinite

unfoldings are identical
– Why structural equivalence is rare…

CS 611 Fall '00 -- Andrew Myers, Cornell University 5

Example
µs.Int→s ≅ µt.Int→(Int→t) ?

• Idea: Infinite unfoldings identical if all (finite or
infinite) paths in one are possible in the other

– Don’t need to actually walk down infinite paths
– Check unfolding under assumption s = t?

Doesn’t work

→
Int →

Int →

Int …

→
Int

→
Int →

Int

≅ ≅

CS 611 Fall '00 -- Andrew Myers, Cornell University 6

Simple types

τ1 ≅ τ3

τ2 ≅ τ4

τ1*τ2 ≅ τ3*τ4

τ1 ≅ τ3

τ2 ≅ τ4

τ1→τ2 ≅ τ3→τ4

τ1 ≅ τ3

τ2 ≅ τ4

τ1+τ2 ≅ τ3+τ4

?
µX.τ ≅ τ’

?
µX.τ ≅ µY.τ’

2

Solution: add a context
• Algorithm: depth-first tandem walk of types

• Context E records type expressions assumed to
be equivalent

• Rule: µX.τ ≅ µY.τ’ if
– assuming µX.τ ≅ µY.τ’,

– unfoldings are equiv: τ{µX.τ/X} ≅ τ{µY.τ’/Y}

Ε, µX.τ ≅ µY.τ’�τ{µX.τ/X} ≅ τ{µY.τ’/Y}
Ε �µX.τ ≅ µY.τ’

Ε, µX.τ ≅ τ’�τ{µX.τ/X} ≅ τ’
Ε �µX.τ ≅ τ’

τ ≅ τ’ ∈E
Ε �τ ≅ τ’

Ε �τ1 ≅ τ3

Ε �τ2 ≅ τ4

Ε �τ1⊕τ2 ≅ τ3⊕τ4 CS 611 Fall '00 -- Andrew Myers, Cornell University 8

Example
µs. (s→s)→s ≅ µt. t→(t→t) ?

Let S = µs. (s→s)→s, T = µt. t→(t→t)

Proof: (simple to implement with graph representation
of types: E = set of pairs of pointers)

∅ � S = T
{S=T} � (S→S)→S = T→(T→T)

{S=T} � S→S = T {S=T} �S = (T→T)
{S=T, S→S=T} � S→S = T→(T→T) …
{…} � S = T {…} � S = T→T

{S=T, S→S=T, S = T→T} � (S→S)→S = T→T

{…} � S→S = T {…} � S = T

CS 611 Fall '00 -- Andrew Myers, Cornell University 9

Recursive domain constructor
• µD . �(D)

– Functor ��maps one domain into another
domain

– D = µX . �(X) produces a domain related to
�(D) by continuous functions up and down
that are inverses of one another

up

down

D ≅ �(D)
d0 � d1 � d2 … ∈D � up(�di) = �up(di)
e0 � e1 � e2 … ∈�(D) �

down(�ei) = �down(ei)

CS 611 Fall '00 -- Andrew Myers, Cornell University 10

Denotational Models
• We have left up and down implicit – can

fold into notion of domain injection (ala
ML):

Result ≅ (Value + Error)⊥
inResult←Value = λv.upResult←Value �in1(v)	

ρ ∈ Var→Value

�x�ρ = inResult←Value (ρx)

…

CS 611 Fall '00 -- Andrew Myers, Cornell University 11

Questions
• For what functors (maps from domains to

domains) � can we take a fixed point?
– functors built out of sum, product, lifting,

lifted function space, discrete CPOs

• Can we define fixed point constructor as
µD . �(D) = � �n(0)

where 0 is the empty domain?

– for appropriate ��if we define � correctly
– won’t always work: �(Λ) = Λ→Λ
� �(0) ≅ U �2(0) ≅ U→U ≅ U �n(0) ≅ U

CS 611 Fall '00 -- Andrew Myers, Cornell University 12

Functor properties
• Maps one domain into another

– elements

– ordering relations

• To have fixed point
– must be monotonic

– must preserve fixed points within domains

up

down

D ≅ �(D)

3

CS 611 Fall '00 -- Andrew Myers, Cornell University 13

Solving equations
• Previous recipe: construct a functor F whose

fixed point is solution ; find least fixed point
• N = F(F(F(F(F(…F(∅))))) = fix F(∅)
• For some functions, inductive definition

suffices:

N ≅ unit + N

F(N’) = { in1(u) } ∪ {in2(x) | x ∈N}

fix F(∅) ={in1(u), in2(in1(u)), in2(in2(in1(u)))…}
• Isomorphic to natural numbers… are we done?

x ∈ N
in2(x) ∈ N in1(unit) ∈ N

CS 611 Fall '00 -- Andrew Myers, Cornell University 14

Problem: completeness

• Consider N ≅U+N
�

• Inductive definition gives
in1(u), in2(in1(u)), in2(in2(in1(u))), … (0, 1, 2,…)

in2(⊥), in2(in2(⊥)), in2(in2(in2(⊥))), … (0⊥,1⊥,2⊥,…)

CPO? (Note 0⊥ 1⊥ 2⊥ …)

Lazy language:

∞ = rec n: (µN.unit+N) . inr(n)

CS 611 Fall '00 -- Andrew Myers, Cornell University 15

Problem: Cardinality
• What about domain corresponding to type

µT. T→bool ?
– set of continuous functions from infinite cpo

D to truth value T is isomorphic to powerset
℘(D)

– Cantor’s diagonal argument: no isomorphism
between D and ℘(D) (Winskel, Ch.1)

• No solution to D ≅ D → T⊥?

• Can find solution for some domains
• One important class: bc-domains / Scott

domains
CS 611 Fall '00 -- Andrew Myers, Cornell University 16

Example: Integer Lists
L ≅ Z*(U + L)

• Solution 1: all finite lists of integers
– anything buildable using finite # of up’s (inductively

defined) – countable set

– adequate for a CBV language

• Solution 2: all finite or infinite lists of integers
– CBN language: (rec x �1, �2, x��)

– anything that looks like a list: can apply a finite
number of down’s (co-inductive defn) – uncountable
set, only a infinitesimal fraction computable

– Only infinite lists that are limits of finite lists are
constructable – countable set!

CS 611 Fall '00 -- Andrew Myers, Cornell University 17

“Finite” vs. “Infinite” elements
• Problem: how to control the “infinite” elements

• Know how to generate all the finite elements using rule
induction as previously, need to add all the “infinite”
elements
– infinite elements of interest are limits of chains of finite values

– without increasing cardinality

• “Finite” elements are the compact elements

– x is compact if for every chain M where x ��M, there exists a y
in M such that x � y

• Idea: set of compact elements (0,1,2,…) defines a basis
from which the non-compact elements (e.g. infinity) can
be extrapolated.

• Basis for domain D is K(D); contains finite
approximations to the non-compact elements of D

CS 611 Fall '00 -- Andrew Myers, Cornell University 18

Algebraic domains
• bc-domain D must be algebraic: every element

must be LUB of the compact elements � it.
– directed set: all pairs of elements a, b have least

upper bound a � b in the set
– for all x ∈ D the set M = { a ∈ K(D) | a � x } is

directed, x =�M

– structure of non-compact elements determined
completely by compact elements – “no surprises at
infinity”

......

algebraic not algebraic

4

CS 611 Fall '00 -- Andrew Myers, Cornell University 19

bc-domains
• Another problem: given algebraic domains D, E,

domain of continuous functions D→E may not
be algebraic! (Example: Gunter Ch. 5)

• Can fix by requiring domains to be bounded
complete: if two elements in D have an upper
bound, they have a least upper bound

• bc-domain: bounded-complete, algebraic CPO
– Restricts compact and non-compact elements of D so

continuous functions D→E⊥ can form a bc-domain of
the same cardinality as D

– Information systems (Winskel, Ch. 12) are a way to
generate functors that always map bc-domains to bc-
domains properties, allowing fixed points over bc-
domains. (Also defines CPO over domains)

