CS 611
Advanced Programming Languages
Andrew Myers
Cornell University
Lecture 31
Recursive Domains
8 Nov 00

Interpreting types

－Types can define names；need type environment χ ：Type \rightarrow Domain to define inductively
$\mathcal{J} \llbracket \tau \rrbracket \chi$ gives domain corresponding to τ
フ【unit】 $\chi=\mathrm{U}$
フ［int】 $\downarrow=$ Z
Compiler algorithm！
$\mathcal{J} \llbracket \rrbracket \rrbracket \chi=\chi(X)$
$\mathcal{J} \llbracket \tau_{1}{ }^{*} \tau_{2} \rrbracket \chi=\mathcal{J} \llbracket \tau_{1} \rrbracket \chi \times \mathcal{J} \llbracket \tau_{2} \rrbracket$
$\mathcal{J} \llbracket \tau_{1} \rightarrow \tau_{2} \rrbracket \chi=\mathcal{J} \llbracket \tau_{1} \rrbracket \chi \rightarrow \mathcal{J} \llbracket \tau_{2} \rrbracket_{\perp}$
$\mathcal{J} \llbracket \mu X . \tau \rrbracket \chi=\mu D . Э \llbracket \tau \rrbracket \chi[X \mapsto D]$

Recursive types in compilation

－Two implementation options：
1．Represent types syntactically
2．Construct fixed points as cyclical graphs（can avoid replication：hash）
$\mu=$ loop
class Node \｛
Edge［］outgoing＿edges；
\}
class Edge \｛
Node from；
Node to；
\}
CS 611 Fall＇00－－Andrew Myers，Cornell University

Structural equivalence

－Given $T=\mu \mathrm{X}$ ．$\tau, \mathrm{T} \cong \tau\{\mathrm{T} / \mathrm{X}\}$
$\mu \mathrm{X} . \mathrm{X} * \mathrm{X}+\mathrm{U} \cong \mu \mathrm{X} .(\mu \mathrm{X} . \mathrm{X} * \mathrm{X}+\mathrm{U}) * \mathrm{X}+\mathrm{U}$

$$
\cong \mu \mathrm{X} . \mathrm{X} *(\mu \mathrm{X} . \mathrm{X} * \mathrm{X}+\mathrm{U})+\mathrm{U}
$$

－Language with explicit fold／unfold： expression has unique type
－Typical language w／structural equivalence：how to decide $\tau_{1} \cong \tau_{2}$ ？
－Idea：two types equivalent if infinite unfoldings are identical
－Why structural equivalence is rare．．．

Solution: add a context

- Algorithm: depth-first tandem walk of types
- Context E records type expressions assumed to be equivalent
- Rule: $\mu \mathrm{X} . \tau \cong \mu \mathrm{Y} . \tau^{\prime}$ if

$$
\frac{\tau \cong \tau^{\prime} \in \mathrm{E}}{\mathrm{E} \vdash \tau \cong \tau^{\prime}}
$$

- assuming $\mu \mathrm{X} . \tau \cong \mu \mathrm{Y} . \tau^{\prime}$,
- unfoldings are equiv: $\tau\{\mu \mathrm{X} . \tau / \mathrm{X}\} \cong \tau\left\{\mu \mathrm{Y} . \tau^{\prime} / \mathrm{Y}\right\}$

$$
\begin{gathered}
\frac{\mathrm{E}, \mu \mathrm{X} . \tau \cong \mu \mathrm{Y} . \tau^{\prime} \vdash \tau\{\mu \mathrm{X} . \tau / \mathrm{X}\} \cong \tau\left\{\mu \mathrm{Y} . \tau^{\prime} / \mathrm{Y}\right\}}{\mathrm{E} \vdash \mu \mathrm{X} . \tau \cong \mu \mathrm{Y} . \tau^{\prime}} \\
\frac{\mathrm{E}, \mu \mathrm{X} . \tau \cong \tau_{1} \cong \tau_{3}}{\mathrm{E} \vdash \mu \mathrm{X} . \tau \cong \tau\{\mu \mathrm{X} . \tau / \mathrm{X}\} \cong \tau^{\prime}} \\
\\
\end{gathered}
$$

Example

$\mu \mathrm{s} .(\mathrm{s} \rightarrow \mathrm{s}) \rightarrow \mathrm{s} \cong \mu \mathrm{t} . \mathrm{t} \rightarrow(\mathrm{t} \rightarrow \mathrm{t})$?
Let $\mathrm{S}=\mu \mathrm{s} .(\mathrm{s} \rightarrow \mathrm{s}) \rightarrow \mathrm{s}, \mathrm{T}=\mu \mathrm{t} . \mathrm{t} \rightarrow(\mathrm{t} \rightarrow \mathrm{t})$
Proof: (simple to implement with graph representation of types: $\mathrm{E}=$ set of pairs of pointers)
$\{\ldots\} \vdash \mathrm{S} \rightarrow \mathrm{S}=\mathrm{T} \quad\{\ldots\} \vdash \mathrm{S}=\mathrm{T}$
$\{\mathrm{S}=\mathrm{T}, \mathrm{S} \rightarrow \mathrm{S}=\mathrm{T}, \mathrm{S}=\mathrm{T} \rightarrow \mathrm{T}\} \vdash(\mathrm{S} \rightarrow \mathrm{S}) \rightarrow \mathrm{S}=\mathrm{T} \rightarrow \mathrm{T}$
$\{\ldots\} \vdash \mathrm{S}=\mathrm{T} \quad\{\ldots\} \vdash \mathrm{S}=\mathrm{T} \rightarrow \mathrm{T}$
$\{\mathrm{S}=\mathrm{T}, \mathrm{S} \rightarrow \mathrm{S}=\mathrm{T}\} \vdash \mathrm{S} \rightarrow \mathrm{S}=\mathrm{T} \rightarrow(\mathrm{T} \rightarrow \mathrm{T})$
$\{\mathrm{S}=\mathrm{T}\} \vdash \mathrm{S} \rightarrow \mathrm{S}=\mathrm{T} \quad\{\mathrm{S}=\mathrm{T}\} \vdash \mathrm{S}=(\mathrm{T} \rightarrow \mathrm{T})$ $\{\mathrm{S}=\mathrm{T}\} \vdash(\mathrm{S} \rightarrow \mathrm{S}) \rightarrow \mathrm{S}=\mathrm{T} \rightarrow(\mathrm{T} \rightarrow \mathrm{T})$

CS 611 Fall 'oo -- Andrew Myers, Cornell University

Denotational Models

- We have left up and down implicit - can fold into notion of domain injection (ala ML):

Result $\cong($ Value + Error $) \perp$
$i n_{\text {Result } \leftarrow \text { Value }}=\lambda v . u p_{\text {Result } \leftarrow \text { Value }}\left\lfloor i n_{1}(v)\right\rfloor$
$\rho \in \operatorname{Var} \rightarrow$ Value
$\mathcal{C} \llbracket x \rrbracket \rho=i n_{\text {Result } \leftarrow \text { Value }}(\rho x)$
...
CS 611 Fall 'oo -- Andrew Myers, Cornell University
10

Functor properties

- Maps one domain into another
- elements
- ordering relations
- To have fixed point
- must be monotonic
- must preserve fixed points within domains

$$
\stackrel{\text { up }}{\stackrel{\text { Down }}{\substack{\mathcal{I}}}(D)}
$$

CS 611 Fall '00 -- Andrew Myers, Cornell University
12

Solving equations

- Previous recipe: construct a functor F whose fixed point is solution ; find least fixed point
- $N=F(F(F(F(F(\ldots F(\varnothing)))))=$ fix $F(\varnothing)$
- For some functions, inductive definition suffices:

$$
N \cong \text { unit }+N \quad \frac{x \in N}{\operatorname{in}_{1}(\text { unit }) \in N} \frac{x}{\operatorname{in}_{2}(x) \in N}
$$

$F\left(N^{\prime}\right)=\left\{i n_{1}(u)\right\} \cup\left\{i n_{2}(x) \mid x \in N\right\}$
fix $F(\varnothing)=\left\{i n_{1}(u), i n_{2}\left(i n_{1}(u)\right), i n_{2}\left(i n_{2}\left(i n_{1}(u)\right)\right) \ldots\right\}$

- Isomorphic to natural numbers... are we done?

CS 611 Fall '00 -- Andrew Myers, Cornell University

Problem: completeness

- Consider $N \cong \mathbb{I U}+N_{\perp}$
- Inductive definition gives
$i n_{1}(u), i n_{2}\left(i n_{1}(u)\right), i n_{2}\left(i n_{2}\left(i n_{1}(u)\right)\right), \ldots(0,1,2, \ldots)$
$i n_{2}(\perp), i n_{2}\left(i n_{2}(\perp)\right), i n_{2}\left(i n_{2}\left(i n_{2}(\perp)\right)\right), \ldots\left(0_{\perp}, 1_{\perp}, 2_{\perp}, \ldots\right)$

CPO ? (Note $\mathrm{O}_{\perp} \sqsubseteq 1_{\perp} \sqsubseteq 2_{\perp} \sqsubseteq \ldots$)
Lazy language:
$\infty=$ rec $n:(\mu N$.unit $+N) \cdot \operatorname{inr}(n)$
cS 611 Fall 'oo -- Andrew Myers, Cornell University

Problem: Cardinality

- What about domain corresponding to type $\mu \mathrm{T}$. T \rightarrow bool ?
- set of continuous functions from infinite cpo D to truth value τ is isomorphic to powerset $\wp(D)$
- Cantor's diagonal argument: no isomorphism between D and $\wp(\mathrm{D}) \quad$ (Winskel, Ch.1)
- No solution to $\mathrm{D} \cong \mathrm{D} \rightarrow \pi_{\perp}$?
- Can find solution for some domains
- One important class: bc-domains / Scott domains

CS 611 Fall '00 -- Andrew Myers, Cornell University

Example: Integer Lists
 $$
L \cong \mathbb{Z}^{*}(\mathrm{ul}+L)
$$

- Solution 1: all finite lists of integers
- anything buildable using finite \# of up's (inductively defined) - countable set
- adequate for a CBV language
- Solution 2: all finite or infinite lists of integers
- CBN language: (rec $x\langle 1,\langle 2, x\rangle\rangle)$
- anything that looks like a list: can apply a finite number of down's (co-inductive defn) - uncountable set, only a infinitesimal fraction computable
- Only infinite lists that are limits of finite lists are constructable - countable set!
CS 611 Fall ' 00 -- Andrew Myers, Cornell University 16
16

"Finite" vs. "Infinite" elements

- Problem: how to control the "infinite" elements
- Know how to generate all the finite elements using rule induction as previously, need to add all the "infinite" elements
- infinite elements of interest are limits of chains of finite values - without increasing cardinality
- "Finite" elements are the compact elements
- x is compact if for every chain M where $\mathrm{x} \sqsubseteq \sqcup \mathrm{M}$, there exists a y in M such that $\mathrm{x} \subseteq \mathrm{y}$
- Idea: set of compact elements ($0,1,2, \ldots$) defines a basis from which the non-compact elements (e.g. infinity) can be extrapolated.
- Basis for domain D is $\mathrm{K}(\mathrm{D})$; contains finite approximations to the non-compact elements of D

Algebraic domains

- bc-domain D must be algebraic: every element must be LUB of the compact elements $\sqsubseteq ~ i t . ~$
- directed set: all pairs of elements a, b have least upper bound $a \sqcup b$ in the set
- for all $x \in \mathrm{D}$ the set $\mathrm{M}=\{a \in \mathrm{~K}(\mathrm{D}) \mid a \sqsubseteq x\}$ is directed, $x=\sqcup \mathrm{M}$
- structure of non-compact elements determined completely by compact elements - "no surprises at infinity"

- algebrai

bc-domains

- Another problem: given algebraic domains D, E, domain of continuous functions $\mathrm{D} \rightarrow \mathrm{E}$ may not be algebraic! (Example: Gunter Ch. 5)
- Can fix by requiring domains to be bounded complete: if two elements in D have an upper bound, they have a least upper bound
- bc-domain: bounded-complete, algebraic CPO
- Restricts compact and non-compact elements of D so continuous functions $\mathrm{D} \rightarrow \mathrm{E}_{\perp}$ can form a bc-domain of the same cardinality as D
- Information systems (Winskel, Ch. 12) are a way to generate functors that always map bc-domains to bcdomains properties, allowing fixed points over bcdomains. (Also defines CPO \unlhd over domains)

