
1

CS 611
Advanced Programming Languages

Andrew Myers

Cornell University

Lecture 28

Strong Normalization, Logical relations
1 Nov 00

CS 611 Fall '00 -- Andrew Myers, Cornell University 2

Soundness for SOS
• Last time: soundness of typing rules for structural

operational semantics
• “e is well-typed” � e : τ
• “e does not get stuck”:

∀ e� . e →* e�� e∈ Value ∨ ∃ e��. e� → e��

• Soundness: “e is typable” � “e does not get stuck”
• Three parts to proof:

– Preservation/Subject reduction � e : τ ∧ e → e�� � e� : τ
– Progress � e : τ � (e∈ Value ∨ ∃ e��. e�→ e��)
– Induction on number of steps (generic)

• New tool: induction on type derivation
• Real languages much harder...

CS 611 Fall '00 -- Andrew Myers, Cornell University 3

Strong normalization
• Every program in λ→ terminates. Obvious?

– Reduction can increase size of an expression
– Reduction can increase number of contained lambda

expressions
((λ f : int→int . (+ (f 0) (f 1))) (λ y : int . (* y 2)))

– Untyped lambda calculus is not strongly normalizing

• Idea: size of types decreases
• Proof strategy: define set of strongly normalizing

expressions SNτ for every type τ, show by
induction on type derivation that expression of
type t is a member of SNτ.

• Method of logical relations : relations on
expressions indexed by types

CS 611 Fall '00 -- Andrew Myers, Cornell University 4

Stable expressions
• Problem: induction hypothesis is not strong enough to

handle application expressions.
• Strengthen induction hypothesis: define subset of

strongly normalizing expressions (the stable
expressions); show all expressions in λ→ are stable.

• Stable expressions are strongly normalizing and result in
strongly normalizing expressions when applied to other
strongly normalizing expressions.

• Tτ is the set of stable expressions of type τ.
• Define inductively (note e � v ⇔ e →* v)

Tint = { e | � e : int ∧ e � n }
Tτ→τ’ = { e | � e : τ→τ� ∧ e � v

∧ (∀ e�∈ Tτ . (e e�) ∈ Tτ�)}
• Goal: � e : τ � e ∈ Tτ

CS 611 Fall '00 -- Andrew Myers, Cornell University 5

Strategy
Tint = { e | � e : int ∧ e � n }

Tτ→τ’ = { e | � e : τ→τ� ∧ e � v ∧ (∀ e�∈ Tτ . (e e�) ∈ Tτ’) }

Goal: � e : τ � e ∈ Tτ (since Tτ⊆ SNτ)
• Will use induction on type derivation for e
• Problem: rule for typing λ exprs adds to type

context Γ. Need to extend goal to allow it to be
proved inductively: use substitution operators

• Introduce function γ mapping variables to
expressions. γ : Var → Exp

• γ only substitutes stable expressions of the right
type: γ � Γ ⇔ ∀ x∈ dom(Γ) . γ(x) ∈ TΓ(x)

CS 611 Fall '00 -- Andrew Myers, Cornell University 6

Substitution function
• Given any function γ, we can define a related

function γ mapping Expr→Expr and performing
all the substitutions specified by γ:

γ�x� = γ(x) if x∈ dom(γ)

γ�x� = x if x∉ dom(γ)

γ�n� = n

γ�e0 e1�= γ�e0� γ�e1�

γ�λ x : τ . e�= λ x : τ . γ��e�

γ’ is identical to γ except
that it does not map x

2

CS 611 Fall '00 -- Andrew Myers, Cornell University 7

Refined goal
• Original goal: show all expressions are stable

� e : τ � e ∈ Tτ

• Suppose we can prove the following goal:

Γ � e : τ � ∀γ �Γ . γ �e� ∈ Tτ

• Now consider Γ = ∅. The only γ satisfying this
type context is the identity mapping. Therefore,
our refined goal becomes our original goal.

• Substitution Lemma: Γ�e : τ � ∀γ �Γ. � γ �e� : τ
– Generalization of proof from last class

• Now we turn the inductive crank.
CS 611 Fall '00 -- Andrew Myers, Cornell University 8

Part I
To show: Γ � e : τ � ∀γ �Γ . γ �e� ∈ Tτ

• Integers: Γ � n : int � ∀γ �Γ . n ∈ Tint

• Variables: Γ � x : Γ(x) � ∀γ �Γ . γ�x� ∈ TΓ(x)
– if γ� Γ then γ�x� = γ(x) ∈ TΓ(x) by definition.

• Application: Γ � (e0 e1) : τ
– Consider a γ such that γ�Γ
– γ�e0 e1� = γ�e0� γ�e1�

– From type judgement: Γ � e0 : τ1→τ, Γ � e1:τ1

– inductive hypothesis gives us γ�e0� and γ�e1� are
stable; therefore their application is too

Tτ→τ’ = { e | � e : τ→τ ’ ∧ e � v ∧ (∀ e’∈ Tτ . (e e’) ∈ Tτ’)}

CS 611 Fall '00 -- Andrew Myers, Cornell University 9

Part II
To show: Γ � e : τ � ∀γ �Γ . γ �e� ∈ Tτ
Γ � (λx:τ . e): τ→τ�� ∀γ �Γ. γ �λx:τ . e� ∈ Tτ→τ�
• Assume LHS, consider arbitrary γ � Γ
Recall Tτ→τ� = { e | � e : τ→τ� ∧ e � v ∧ (∀ e�∈ Tτ . (e e�) ∈ Tτ�)}

• Substitution Lemma: � γ �(λ x : τ . e)� : τ→τ�
• γ �λ x : τ . e� is already a value so � v
• Need ∀ e�∈ Tτ . (γ�λ x : τ . e� e�) ∈ Tτ�

– γ�λ x : τ . e� e� = (λ x : τ . γ��e�)e� = γ��e� {e�/x} = γ���e�
where γ�� = γ [x � e�]

– From typing rule: Γ[x � τ] � e� : τ�
– Apply induction hypothesis, instantiate on γ�� :

γ���Γ[x � τ] � γ���e� ∈ Tτ� γ�� �Γ[x � τ] (e�∈ Tτ)
QED CS 611 Fall '00 -- Andrew Myers, Cornell University 10

Agreement
• Would like to know that denotational

semantics and operational semantics
agree

Operational evaluation

e → e� → e�� → … → v : τ

���� e : τ� ρ0 ∈ ��τ�
Denotational model

CS 611 Fall '00 -- Andrew Myers, Cornell University 11

Adequacy
• Denotational semantics are adequate with

respect to operational semantics if:

• Operational evaluation produces one of the
values allowed by denotational semantics

e →* v ∧ � e : τ � ��� e : τ� ρ0 = ��� v : τ� ρ0

• They agree on observable results: divergence

∃ v . e →* v ∧ � e : τ ⇔ ��� e : τ� ρ0 ≠ ⊥
• and also on ground types (e.g. int)

e →* v ∧ � e : int ⇔ ��� e : int � ρ0 = v

e →* v ∧ � e : τ ⇔ ��� e : τ � ρ0 = ��� v : τ � ρ0 ?
CS 611 Fall '00 -- Andrew Myers, Cornell University 12

Coming soon: richer types

• Recursive types

• Polymorphic types

• Subtyping

• Objects

