
1

CS 611
Advanced Programming Languages

Andrew Myers

Cornell University

Lecture 13

Domain Constructions
22 Sep 00

CS 611 Fall '00 -- Andrew Myers, Cornell University 2

Administration
• Homework 2 due on Monday

• Scribes needed

• Winskel×2, Gunter available on reserve in
Engineering library

CS 611 Fall '00 -- Andrew Myers, Cornell University 3

Fixed points
• Denotational semantics for IMP rely on

taking fixed point to define ��while�

• Fixed points occur in most language
definitions: needed to deal with loops
– control flow loops: while

– data loops: recursive functions, recursive data
structures, recursive types

• Only know how to find least fixed pts for
continuous functions f

• Need easy way to ensure continuity
CS 611 Fall '00 -- Andrew Myers, Cornell University 4

Meta-language
• Idea: define restricted language for

expressing mathematical functions

• All functions expressible in this language
are continuous

• Looks like a programming language (ML)
– not executed: just mathematical notation

– can talk about non-termination!

– “evaluation” is lazy (vs. eager in ML)

CS 611 Fall '00 -- Andrew Myers, Cornell University 5

“Types” for Meta-language
• Meta-language contains domain

declarations indicating the set of values
meta-variables can take on, e.g.
λf ∈Σ⊥→Σ⊥. λσ∈Σ⊥.if ¬��b� σ then σ else f (��c�)

• Domains will function as types for meta-
language
– but with precisely defined meaning, ordering

relation, etc.
– T1 * T2 is not necessarily modeled by T1×T2!

• Meta-language consists of domains and
associated operations

CS 611 Fall '00 -- Andrew Myers, Cornell University 6

Lifting
• If D is a domain (for now: cpo), can “lift”

by adding new bottom element to form
pointed cpo D�

• cpo defined by underlying set plus
complete ordering relation �

• Elements of D� are �di�,� where di∈D
• Ordering relation:
�di���d�i� ⇔ di� di

���di�

• Complete?

D

�

D�

2

CS 611 Fall '00 -- Andrew Myers, Cornell University 7

Discrete cpos
• Various discrete cpos: booleans (T), natural

numbers (ω), integers (Z), …
• Corresponding functions over discrete cpos

exist: + : Z→Z, ∧ : T→T

• Often want to lift discrete cpos to take fixed
points; helpful to extend fcns to pointed cpos

• If f∈D→E, then f⊥∈D⊥→E⊥, f *∈D⊥→E are
f⊥ = λd∈D⊥.if d=⊥ then ⊥ else f (d)
f * = λd∈D⊥.if d=⊥ then ⊥ else f (d) (if E pointed)

• 2 +⊥ 2 = 4, 3 +⊥ ⊥ = ⊥, ⊥ ∧⊥ true = true
• If f continuous, are f⊥ , f * ?

CS 611 Fall '00 -- Andrew Myers, Cornell University 8

let
• Useful syntax: given d∈D⊥

let x = d in e ≡ (λx∈D.e)*d

• Expresses evaluation of e that is strict in d

• Example: ��while�

= fix λf ∈Σ⊥→Σ⊥. λσ�∈Σ⊥.
let σ=σ� in if ¬��b� σ then σ else f (��c�)

CS 611 Fall '00 -- Andrew Myers, Cornell University 9

Unit
• Simplest cpo: empty set (∅)
• Next simplest: unit domain (U)

– single element: u
– ordering relation: reflexive
– complete: only directed set is {u}

• Used to represent computations that
terminate but do not produce a value,
argument for functions that need no
argument

• Also building block for other domains

.u

Hasse diagram

CS 611 Fall '00 -- Andrew Myers, Cornell University 10

Products
• If D1, D2 are domains, then D1×D2 is a

product domain
• Underlying set: pairs �d1, d2	 where di∈Di

• Ordering:
�d1, d2	 � �d
1, d
2	 iff

d1�d
1 & d2�d
2
• Extends to n-tuples
• Operations:

– tupling: �d1,…,dm�

– projection: πi �d1,…,dm� = di

D1 D2 D1×D2

CS 611 Fall '00 -- Andrew Myers, Cornell University 11

CPO?
• Is product domain a cpo if D1, D2 are?
• Any chain �d0, d
0	 ��d1, d
1	 ��d2, d
2	 � …

must have LUB in D1×D2

• Definition of �: d0�d1�d2�… is chain in
D1, d
0�d
1�d
2�… is chain in D2

• If d�∈D1, d
�∈D2 are respective LUBs,
�d�,d
�	∈D1×D2 is LUB of chain of pairs

• Operations continuous?
πi �n∈ωxn = �πi xn = �din

��x1n, …, xmn	 = ��d1n, …,�dmn	

CS 611 Fall '00 -- Andrew Myers, Cornell University 12

Sums
• Sometimes want to allow values of one kind or

another: D1+D2

• Elements of domain are
elements of D1 or D2 tagged
with origin: {ini(di) | di∈Di}

• Form of ini is irrelevant (could be λd.�i, d�)
• Preserves ordering of individual domains:

ini(di) � inj(dj) iff i=j, di�dj

• Injection function ini is continuous
• Extends naturally to multi-domain sum
• CPO, but not pointed

D1 D2

D1+D2

3

CS 611 Fall '00 -- Andrew Myers, Cornell University 13

Sums, cont’d
• Why tag? Distinguishes identical domains

– T = U + U, true = in1(u), false = in2(u)

• Sums unpacked with case construction:
case e of x1.e1 | x2.e2 ≡ case e of D1(x1).e1 | D2(x2).e2

• Given e = ini(di), has value fi(di)∈E where
fi∈Di→E = (λxi∈Di .ei)

• Continuous function of e if all fi continuous:

�case en of … = case�en of … ?

�fi(din) = fi(�din)

• Also continuous function of each fi

�case e of f1n | f2 = case e of �f1n | f2 = �f1n(d1)
CS 611 Fall '00 -- Andrew Myers, Cornell University 14

Continuous functions
• Given cpos D, E, define D→E as domain of

continuous functions mapping D to E
(subset of ED)

• Pointwise ordering: f �g iff f (d)�g(d)

• Complete?

�n∈ω fn = λd∈D . �n∈ω fn(d)

(λd∈D . �n∈ω fn(d)) (�m∈ω dm) =

�m∈ω (λd∈D . �n∈ω fn(d)) (dm) ?

continuous?

CS 611 Fall '00 -- Andrew Myers, Cornell University 15

Proof of Continuity
(λd∈D . �n∈ω fn(d)) (�m∈ω dm) =

�m∈ω (λd∈D . �n∈ω fn(d)) (dm)?

= �n∈ω fn(�m∈ω dm)

= �n∈ω�m∈ω fn(dm)

= �n∈ω fn(dn)

= �m∈ω�n∈ω fn(dm)

= �m∈ω (λd∈D . �n∈ω fn(d)) (dm)

CS 611 Fall '00 -- Andrew Myers, Cornell University 16

�n�m fn(dm) = �n fn(dn) = �m�n fn(dm)
Let enm = fn(dm)

n≤n
, m≤m
� enm � en�m�

enm�en�n� for n� = max(m,n), so �n,menm��nenn

enn��m enm, so�nenn��n�m enm,�m�n enm

�m enm��n,menm, so �n�m enm��n,menm

Lemma

e00

e10e01

e20e02

nm

CS 611 Fall '00 -- Andrew Myers, Cornell University 17

Operations on functions
• apply ∈ (D→E) × D→E = λp.(π1p)(π2p)

• curry ∈ ((D×E)→F)→(D→E→F)
= λf∈(D×E)→F . λd∈D.λe∈E.f �d,e	

• compose = · � · ∈ (D→E)×(E→F)→(D→F)
= λ� f,g	.λd∈D.f (g(d))

• fix ∈(D→D)→D (D pointed)

= λg∈D→D. �n gn(�)

= �n λg∈D→D. gn(�) (LUB of cont.fcns!)

CS 611 Fall '00 -- Andrew Myers, Cornell University 18

Meta-Language
• Have defined various constructs that we can use

to define continuous functions

• Constructs are a syntax for a meta-language in
which only continuous functions can be defined

• How do we know when expression λx.e is
continuous?

• Idea: use structural induction on form of e so
every syntacally valid e can be abstracted over
any variable to produce continuous function

• Problem: structural induction � need to
consider open terms e

4

CS 611 Fall '00 -- Andrew Myers, Cornell University 19

Continuity in variables
• Idea: consider a meta-language expression

e to be implicitly function of its free
variables

• e is continuous in variable x if λx.e is
continuous for arbitrary values of other
(non-x) free variables in e

• e is continuous in variables not free in e

• structural induction: for each syntactic
form, show that term is continuous in
variables assuming sub-terms are

