CS 611 Advanced Programming Languages

Andrew Myers Cornell University

Lecture 13 Domain Constructions 22 Sep 00

Administration

· Homework 2 due on Monday

CS 611 Fall '00 -- Andrew Myers, Cornell University

- Scribes needed
- Winskel×2, Gunter available on reserve in Engineering library

Fixed points

- Denotational semantics for IMP rely on taking fixed point to define C[[while]]
- Fixed points occur in most language definitions: needed to deal with loops
 - control flow loops: while
 - data loops: recursive functions, recursive data structures, recursive types
- Only know how to find least fixed pts for continuous functions f
- Need easy way to ensure continuity CS 611 Fall '00 -- Andrew Myers, Cornell University

Meta-language

2

- Idea: define restricted language for expressing mathematical functions
- All functions expressible in this language are continuous
- Looks like a programming language (ML) – not executed: just mathematical notation
 - can talk about non-termination!
 - "evaluation" is lazy (vs. eager in ML)

CS 611 Fall '00 -- Andrew Myers, Cornell University

"Types" for Meta-language

- Meta-language contains domain declarations indicating the set of values meta-variables can take on, e.g.
 - $\lambda f \in \Sigma_{\perp} \to \Sigma_{\perp}$, $\lambda \sigma \in \Sigma_{\perp}$. *if* $\neg B \llbracket b \rrbracket \sigma$ then σ else $f(C \llbracket c \rrbracket)$
- Domains will function as types for metalanguage
 - but with precisely defined meaning, ordering relation, etc.
 - $-T_1 * T_2$ is not necessarily modeled by $T_1 \times T_2$!
- Meta-language consists of domains and associated operations

CS 611 Fall '00 -- Andrew Myers, Cornell University

Lifting If D is a domain (for now: cpo), can "lift" by adding new bottom element to form pointed cpo D_⊥ cpo defined by underlying set plus complete ordering relation ⊑ Elements of D_⊥ are ⌊d_i⌋,⊥ where d_i∈D

Ordering relation:

Discrete cpos

- Various discrete cpos: booleans (T), natural numbers (ω), integers (Z), ...
- Corresponding functions over discrete cpos exist: + : $Z \rightarrow Z$, \land : $T \rightarrow T$
- Often want to lift discrete cpos to take fixed points; helpful to extend fcns to pointed cpos
- If $f \in D \to E$, then $f_{\perp} \in D_{\perp} \to E_{\perp}$, $f^* \in D_{\perp} \to E$ are $f_{\perp} = \lambda d \in D_{\perp}$. if $d = \perp$ then \perp else f(d) $f^* = \lambda d \in D_{\perp}$. if $d = \perp$ then \perp else f(d) (if *E* pointed)
- 2 + 2 = 4, 3 + 1 = 1, 1 + 1 true = true
- If *f* continuous, are *f*_⊥, *f* * ? CS 611 Fall '00 – Andrew Myers, Cornell University

Unit

- Simplest cpo: empty set (∅)
- Next simplest: *unit domain* (U) _{Hasse diagram}

٠u

- single element: u
- ordering relation: reflexive
- complete: only directed set is $\{u\}$
- Used to represent computations that terminate but do not produce a value, argument for functions that need no argument
- · Also building block for other domains

CS 611 Fall '00 -- Andrew Myers, Cornell University

CPO?

- Is product domain a cpo if D_1 , D_2 are?
- Any chain $\langle d_0, d'_0 \rangle \equiv \langle d_1, d'_1 \rangle \equiv \langle d_2, d'_2 \rangle \equiv \dots$ must have LUB in $D_1 \times D_2$
- Definition of $\sqsubseteq: d_0 \sqsubseteq d_1 \sqsubseteq d_2 \sqsubseteq \dots$ is chain in $D_1, d'_0 \sqsubseteq d'_1 \sqsubseteq d'_2 \sqsubseteq \dots$ is chain in D_2
- If d_∞∈ D₁, d'_∞∈ D₂ are respective LUBs, ⟨d_∞,d'_∞⟩∈ D₁×D₂ is LUB of chain of pairs
 Operations continuous?
- $\pi_{i} \sqcup_{n \in \omega} x_{n} = \sqcup \pi_{i} x_{n} = \sqcup d_{in}$ $\sqcup \langle x_{1n}, ..., x_{mn} \rangle = \langle \sqcup d_{1n}, ..., \sqcup d_{mn} \rangle$ CS 611 Fall '00 – Andrew Myers, Cornell University

Sums, cont'd

- Why tag? Distinguishes identical domains
 T = U + U, true = *in*₁(u), false = *in*₂(u)
- Sums unpacked with *case* construction: *case e of x*₁.*e*₁ | *x*₂.*e*₂ = *case e of D*₁(*x*₁).*e*₁ | *D*₂(*x*₂).*e*₂
 Given *e* = *in*₁(*d*₁), has value *f*₁(*d*₁)∈ *E* where
- Given $e = m_i(u_i)$, has value $f_i(u_i) \in E$ where $f_i \in D_i \rightarrow E = (\lambda x_i \in D_i \cdot e_i)$
- Continuous function of e if all f_i continuous:

• Also continuous function of each f_i $\Box case \ e \ of \ f_{1n} | f_2 = case \ e \ of \ \Box f_{1n} | f_2 = \Box f_{1n}(d_l)$ CS 611 Fall '00 - Andrew Myers, Cornell University 13

 $\begin{aligned} & \text{Proof of Continuity} \\ (\lambda d \in D . \sqcup_{n \in \omega} f_n(d)) (\sqcup_{m \in \omega} d_m) = \\ \sqcup_{m \in \omega} (\lambda d \in D . \sqcup_{n \in \omega} f_n(d)) (d_m)? \\ &= \sqcup_{n \in \omega} f_n(\sqcup_{m \in \omega} d_m) \\ &= \sqcup_{n \in \omega} \bigcup_{m \in \omega} f_n(d_m) \\ &= \sqcup_{m \in \omega} \bigsqcup_{n \in \omega} f_n(d_m) \\ &= \sqcup_{m \in \omega} (\lambda d \in D . \sqcup_{n \in \omega} f_n(d)) (d_m) \end{aligned}$

- Constructs are a syntax for a meta-language in which only continuous functions can be defined
- How do we know when expression λ*x.e* is continuous?
- Idea: use structural induction on form of *e* so every syntacally valid *e* can be abstracted over any variable to produce continuous function
- Problem: structural induction \Rightarrow need to consider open terms *e*

CS 611 Fall '00 -- Andrew Myers, Cornell University

Continuity in variables

- Idea: consider a meta-language expression *e* to be implicitly function of its free variables
- *e* is continuous in variable *x* if λ*x.e* is continuous for arbitrary values of other (non-*x*) free variables in *e*
- e is continuous in variables not free in e
- structural induction: for each syntactic form, show that term is continuous in variables assuming sub-terms are CS 611 Fall '00 -- Andrew Myers, Cornell University

19