
1

CS 611

Advanced Programming Languages
Andrew Myers

Cornell University

Lecture 1: Introduction
25 Aug 00

CS 611 Fall '00 Lecture 1 -- Andrew Myers 2

Goals

• Deeper understanding of PL’s

• Broader exposure to PL’s

• Not a survey course

CS 611 Fall '00 Lecture 1 -- Andrew Myers 3

Why study PL?
• Elegant math, practical impact

– a study of expressive power
– caveat: comfort with logic, proofs, Ch. 1

• Better language design
– how to specify
– how to prove correct
– embarrassing questions to ask

• Better language implementation
– efficient implementation (more in CS 412)
– correct implementation

• Better programmer
– understand your tools (and which ones to use)

CS 611 Fall '00 Lecture 1 -- Andrew Myers 4

Schedule

• Operational semantics 5

• Inductive proofs 3

• Lambda calculus 3

• Denotational semantics 4

• Interesting language features 8

• Type systems 4

• Interesting types 8

• Miscellaneous topics 3

dynamic

static

CS 611 Fall '00 Lecture 1 -- Andrew Myers 5

Workload

• Sign-up sheet
• Readings (see course schedule)
• 6 homeworks (about half with

programming component, in ML)
• Scribe 3-4 lectures (in pairs)

– we will provide TeX template
– meet with me for feedback

• Prelim: tentatively Oct. 26, 7-9:30PM

• Final exam: Dec. 7, 12-2:30PM

CS 611 Fall '00 Lecture 1 -- Andrew Myers 6

Course Staff
• Lecturer: Andrew Myers

andru@cs.cornell.edu
Upson 4124
Office hours: Wed 3-4PM

• TA: Matthew Fluet
Email: cs611@cs.cornell.edu
Upson 4162
Office hours: TBA

Web site: courses.cs.cornell.edu/cs611

2

CS 611 Fall '00 Lecture 1 -- Andrew Myers 7

Texts

• Required:
– Winskel, The Formal Semantics of

Programming Languages

• Recommended:
– Gunter, Semantics of Programming

Languages
– Mitchell, Foundations of Programming

Languages
– Gifford (will be placed on-line; may be used

only for this course)

CS 611 Fall '00 Lecture 1 -- Andrew Myers 8

IMP

• Winskel, Ch. 2

• Simple imperative language (vs. functional)

• IMP program is a command
– skip

– X := a

– c0; c1

– if b then c0 else c1

– while b do c

• Variables (X) take integer values

• Arithmetic exprs a, boolean expressions b

CS 611 Fall '00 Lecture 1 -- Andrew Myers 9

Example: GCD

while x ≠ y do
if x < y then

y := y – x
else

x := x – y
end

• Turing-complete (barely): no functions,
data structures

CS 611 Fall '00 Lecture 1 -- Andrew Myers 10

Issues

• What is a legal program in IMP?
– defined by abstract syntax

• What is a legal program execution in
IMP?
– structural operational semantics

• Other properties of interest
– expressions terminate, commands may not
– programs never “crash”
– evaluation is deterministic

CS 611 Fall '00 Lecture 1 -- Andrew Myers 11

Defining Syntax
• Three syntactic sets:

– Aexp: set of legal arithmetic expressions a
– Bexp: legal boolean expressions b
– Com: legal commands c

• Define legal programs inductively using
Backus-Naur form (BNF):

a ::= n | X | a0 + a1 | a0 * a1 | a0 – a1

b ::= a0 = a1 | a0 ≤ a1 | b0 � b1 | b0 � b1 | ¬b
c ::= skip | X := a | c0 ; c1 | if b then c0 else c1 |

while b do c
X ∈ Loc, n ∈ Z

CS 611 Fall '00 Lecture 1 -- Andrew Myers 12

Abstract Syntax

• This course: not about parsing
• Elements of syntactic set are parse trees, not

concrete syntax

• But…will write expressions that look concrete
– parentheses used to disambiguate parsing when

necessary: (3+4)*5 vs. 3 +(4*5)
– not part of abstract syntax

+

3 + 4 * x 3 *
4 x

= ≠ “3+4*x”

3

CS 611 Fall '00 Lecture 1 -- Andrew Myers 13

Operational Semantics

• Any element of Com is a legal program. How
does it evaluate?

• Defining process of program evaluation:
operational semantics

• Java language reference manual: verbose,
long operational semantics

• Structural operational semantics: legal
executions correspond to proofs
– compact

– convenient for proving properties of language

CS 611 Fall '00 Lecture 1 -- Andrew Myers 14

Configurations
• A configuration : what we need to know

about a running program to define how
it executes

• Input to program is a state or memory
mapping variables onto integers

σ : Loc → Z

• Output from program: state σ �
• Command configuration: <c, σ>

CS 611 Fall '00 Lecture 1 -- Andrew Myers 15

Large-step evaluation

• Large-step semantics define complete
evaluation of a program or
subexpression

<c, σ> � σ� = “Command c starting in
state σ terminates in state σ� ”

<a, σ> � n = “expression a evaluates to n”

<b, σ> � t = “expression b evaluates to t”

CS 611 Fall '00 Lecture 1 -- Andrew Myers 16

Some evaluations
�X, σ� � σ(X) (for any σ, Χ)
�n, σ� � n (for any σ, Χ)
�n0 + n1, σ� � n2 (for any n0, n1, n2, Χ

where n2 is sum of n0, n1)

�skip, σ� � σ (for any σ, Χ)

�if b then c0 else c1, σ� � σ’
if

�b, σ� � true and �c0, σ� � σ’ (for any …)

CS 611 Fall '00 Lecture 1 -- Andrew Myers 17

As inference rules

�b, σ� � true �c0, σ� � σ’

�if b then c0 else c1, σ� � σ’

�n, σ� � n

premises

conclusion

meta-variables

axiom

CS 611 Fall '00 Lecture 1 -- Andrew Myers 18

Execution as proof
• Legal executions = those that can be proved

correct inductively
• Proof = proof tree where every step is

application of an inference rule
• Execution = depth-first walk of proof tree
• Collection of inference rules: proof system

�if x < y then x := 0 else skip, [x�1,y�2]� � [x�0,y�2]

�x < y, [x�1,y�2] � � true

�x, [x�1,y�2] � � 1

� x := 0, [x�1,y�2] � � [x�0,y�2]

�y, [x�1,y�2] � � 2
� 0, [x�1,y�2] � � 0

4

CS 611 Fall '00 Lecture 1 -- Andrew Myers 19

Applying rules

• Inference rule represents a large
(infinite) set of rule instances in which
meta-variables are consistently
substituted

�0, σ� � 0�n, σ� � n �1, σ� � 1
, ,…

�b, σ� � true �c0, σ� � σ’

�if b then c0 else c1, σ� � σ’

�0=1, σ� � true �skip, σ� � σ

�if 0=1 then skip else …, σ� � σ?

