CS 611

Advanced Programming Languages Andrew Myers Cornell University

Lecture 1: Introduction 25 Aug 00

Goals

- Deeper understanding of PL's
- Broader exposure to PL's

CS 611 Fall '00 Lecture 1 -- Andrew Myers

• *Not* a survey course

Why study PL?

- Elegant math, practical impact

 a study of expressive power
 caveat: comfort with logic, proofs, Ch. 1
- Better language design
 - how to specify
 - how to prove correct
 - embarrassing questions to ask
- Better language implementation – efficient implementation (more in CS 412)
 - correct implementation
- Better programmer
 - understand your tools (and which ones to use)

CS 611 Fall '00 Lecture 1 -- Andrew Myers

Workload

- Sign-up sheet
- Readings (see course schedule)
- 6 homeworks (about half with programming component, in ML)
- Scribe 3-4 lectures (in pairs)

 we will provide TeX template
 meet with me for feedback
- Prelim: tentatively Oct. 26, 7-9:30PM
- Final exam: Dec. 7, 12-2:30РМ

CS 611 Fall '00 Lecture 1 -- Andrew Myers

Course Staff

- Lecturer: Andrew Myers <u>andru@cs.cornell.edu</u> Upson 4124 Office hours: Wed 3-4PM
 TA: Matthew Fluet
- Email: <u>cs611@cs.cornell.edu</u> Upson 4162 Office hours: TBA Web site: courses.cs.cornell.edu/cs611

CS 611 Fall '00 Lecture 1 -- Andrew Myers

IMP

- Winskel, Ch. 2
- Simple imperative language (vs. functional)
- IMP program is a command
 - skip

-X := a

- $-c_0; c_1$
- if b then c_0 else c_1
- while b do c
- Variables (X) take integer values
- Arithmetic exprs *a*, boolean expressions *b*

8

CS 611 Fall '00 Lecture 1 -- Andrew Myers

Configurations

- A *configuration* : what we need to know about a running program to define how it executes
- Input to program is a *state* or *memory* mapping variables onto integers

 $\sigma: Loc \to Z$

14

- Output from program: state $\sigma^{\,\prime}$
- Command configuration: <*c*, σ>

CS 611 Fall '00 Lecture 1 -- Andrew Myers

Some evaluations	
$\langle X, \sigma \rangle \Downarrow \sigma(X)$	(for any σ , X)
$\langle n, \sigma \rangle \Downarrow n$	(for any σ , X)
$\langle n_0 + n_1, \sigma \rangle \Downarrow n_2$	(for any n_0 , n_1 , n_2 , X where n_2 is sum of n_0 , n_1)
$\langle \mathbf{skip}, \sigma \rangle \Downarrow \sigma$	(for any σ , X)
$\langle \mathbf{if} \ b \ \mathbf{then} \ c_0 \ \mathbf{else} \ c_1, \ \mathbf{\sigma} angle \ \mathbf{\sigma}'$ if	
$\langle b, \sigma \rangle \Downarrow \mathbf{true}$ and $\langle c_0, \sigma \rangle \Downarrow \sigma'$ (for any) CS 611 Fall '00 Lecture 1 – Andrew Myers 16	

