
CS611 Lecture 6 Induction and Inductively Defined Sets September 6, 2000
Scribe: Amy Gale, Anirban Das Gupta Lecturer: Andrew Myers

1 Inductive Proofs

There are a number of properties of entities in CS 611 that need inductive proofs, including:

• expression termination
• deterministic evaluation
• equivalence of semantics
• equivalence of expressions
Winskel’s discussions of these inductive proofs are built on the notion of a well-founded relation ≺, while

the lectures mostly utilize induction on the heights of derivation trees.
Well-founded induction generalizes ordinary induction by introducing a well-founded predecessor function

≺. The predecessor function ≺ for the natural numbers is n ≺ n + 1. In well-founded induction, we want
to prove that some P (e) holds for all e ∈ S, where S has some well-founded relation ≺ on its members, by
showing P (1) and P (e) ∧ n ≺ n′ ⇒ P (n′).

A function is well-founded if there are no infinite downward chains in S ordered by ≺. This means that ≺
must be irreflexive since if there were some a such that a ≺ a then we could construct an infinite downward
chain . . . ≺ a ≺ a ≺ a. If there were an infinite downward chain, then there might not be any base case
supporting the induction.

The rule for well-founded induction is

∀e . (∀e′ ≺ e . P (e′))⇒ P (e)
∀e . P (e) .

It is clear that this corresponds to the induction step in mathematical induction, but less clear that it
also accommodates the base case requirement of same, since when e is an element without a predecessor (eg
1 in the natural numbers), (∀e′ ≺ e . P (e′)) ⇒ P (e) is equivalent to true ⇒ P (e), which is to say we must
be able to derive P (e) without the benefit of an induction hypothesis, just as in standard induction.

Recall that structural induction involves proving that P (e) holds if P (e′) holds for each subexpression e′

of e. Then we can define ≺ via
e′ ≺ e

def= e′ a subexpression of e.

Given that expressions can only have finite length and any expression is strictly longer than each of
its subexpressions the set of expressions ordered by ≺ has no infinite downward chain and so we can use
well-founded induction.

2 Inductively Defined Sets

In our discussions of induction so far we have been trying to show that some P (e) holds for all e in some
inductively defined set. What do we mean by an inductively defined set? Intuitively we mean a set of
elements such that for each element we can construct a finite proof of membership using the inference rules
given for the set. Part of this intuition is that the only expressions we will see in a proof of e will be shorter
than e, so that we are in a sense proving P (e) assuming P (e′) for all shorter e′.

We can express a more generalized (and formal) notion of an inductively defined set as follows. Recall
that an inductive definition of a set is a set of inference rules (a “proof system”) and that given any

substitution of metavariables subject to side conditions. Then we can define a rule operator R by

R(A) def= {x :
x1 . . . xm

x is a rule instance ∧ {x1, . . . , xm} ⊆ A}
Note that R is defined on all sets A (not just on subsets of the inductively defined set).
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Some properties of R:

• R(∅) = {x : x } = the set of elements of the set that can be concluded from axioms.

• R(R(∅)) = the set of elements that have proof trees of height ≤ 1.

• R(A1 ∪ A2) ⊇ R(A1) ∪ R(A2).

• A1 ⊆ A2 ⇒ R(A1) ⊆ R(A2) — R is monotonic with respect to ⊆.
Let S be the set of all elements we can derive by from the rules and axioms of the system. Intuitively, we

require that applying the rules of the system to S should not produce any new elements; that is, S should
be closed under the rule operator R: S ⊇ R(S). We will see that S = R(S), that is S is a fixed point of the
operator R, in fact S is the least fixed point of R, which we denote as fix(R).

• x is a fixed point of f : D → D iff x = f(x).

• fix(R) : (D → D)→ D takes a function and returns the least fixed point of that function.

In order to find this fixed point, we need a solution to S = R(S).
The things we can prove with trees of finite height are the members of the sets ∅ = R0(∅), R(∅), R2(∅), . . .

which are related in a monotonic sequence R0(∅) ⊆ R1(∅) ⊆ R2(∅) ⊆ . . . We can see that this sequence exists
by induction using the fact that R is monotonic: observe that R0(∅) ⊆ R1(∅), then R1(∅) ⊆ R2(∅), and so
on.

Then we can define S by
S =

⋃

n∈ω

Rn(∅).

Now we can show S = fix(R) as follows:

S ⊇ R(S)

Assume x ∈ R(S). Then for some rule instance
x1 . . . xm

x , {x1, . . . , xm} ⊆ S. Because m is finite and
each xi must enter S =

⋃
n∈ω Rn(∅) at a finite stage Ra(∅), there must be some finite n such that

{x1, . . . , xm} ⊆ Rn(∅). Then x ∈ R(Rn(∅)) = Rn+1(∅) and so by the definition of S it must be that
x ∈ S.

S ⊆ R(S)
Assume x ∈ S =

⋃
n∈ω Rn(∅). Then for some n, x ∈ Rn(∅) = R(Rn−1(∅)), and R(Rn−1(∅) ⊆ R(S) by

the definition of S and the monotonicity of R, so x ∈ R(S).

For all fixpoints B = R(B), S ⊆ B

Let B be any other fixpoint B = R(B). Then

∅ ⊆ B

R(∅) ⊆ B

R2(∅) ⊆ B

...
...

(union all above) (union all above)
...

...
S ⊆ B

We can use a similar argument to observe that S is not only the least fixed point, but also the least set
that is closed under R. If B is a set closed under R, then B ⊇ R(B), so the right-hand side of the set
inclusions above will be B, R(B), R2(B), . . ., which are monotonically decreasing sets. Thus we have
S ⊆ B for any such B.
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3 Final Remarks

We try in induction to show P (e) for all e in S = fix(R).

Assume for the induction hypothesis that there is some e contained in Rn(∅) for some n, then the
induction step is to prove P (e) assuming P (e′) for all e′ ∈ Rn′

where n′ < n.

Conclude that
∀n . ∀e ∈ Rn(∅) . P (e)⇒ ∀e ∈ fix(R) . P (e)

.
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