
CS611 Lecture 36 Subtyping, existential types November 20, 2000
Scribe: Yuval Gabay, Mohan Rajagopalan Lecturer: Andrew Myers

1 Interpreting subtyping as coercion

We can interpret the subtyping relation on types in a natural manner as a subtype relation on the interpre-

tation of the types as sets or domains:

�1 � �2 () T (�1) � T (�2)

According to the Curry-Howard isomorphism, we interpret a type as an assertion that the type is inhabited:

that there exists a (non-bottom) value of that type. The subset relationship between T (�1) and T (�2) means

that �2 is inhabited if �1 is, or �1 ) �2: Applying the Curry-Howard isomorphism, this formula implies the

existence of a function of type �1 ! �2: To make this more concrete, we can introduce a function � that

veri�es the subtyping relation instance by producing such a value:

�1 � �2 =) �(�1 � �2) : �1 ! �2

So that the subsumption rule
� ` e : �1 ` �1 � �2

� ` e : �2

becomes
� ` e : �1 � ` �(�1 � �2) : �1 ! �2

� ` (�(�1 � �2) e) : �2

We still have to de�ne the coercion function:

�(� � �) = �x : �:x

�(� � 1) = �x : �:#u

For record types, we can associate separate coercion functions with each of the width and depth subtyping

rules:

�(fl1 : �1; : : : ; ln : �ng � fl1 : �1; : : : ; lm : �mg) = �x:fl1 = x:l1; : : : ; lm = x:lmg (m � n)

�(fl1 : �1; : : : ; ln : �ng � fl1 : �
0

1
; : : : ; ln : �

0

n
g) = �x:fl1 = (�(�1 � �

0

1
) x:l1); : : : ; ln = (�(�n � �

0

n
) x:ln)g

�(�1 ! �2 � �
0

1
! �

0

2
) = �f : (�1 ! �2):(�(�2 � �

0

2
) f (�(� 0

1
� �1) x))

Note that the coercion function is de�ned by induction on the derivation of the relation �1 � �2 { in

order to de�ne the value of �(�1 � �2) one has to follow the derivation of the subtyping relation instance

` �1 � �2; and de�ne � on each instance in the proof tree.

2 Typed translation

We have seen in the past de�nitions of translation functions { functions which transform expressions in one

given language to equivalent expressions in another. Translation of typed languages achieves even more: it

translates derivations of type judgements, so that no rejudging has to be made in the new language. Such a

translation function will have the form:

D[[� ` e : � ]] = � ` e
0 : �

Now we present some of the rules which de�ne the translation function D: For derivation steps using the

subsumption rule:
D[[� ` e : �1]] = � ` e

0 : �1 � ` �(�1 � �2) : �1 ! �2

D[[� ` e : �2]] = � ` (�(�1 � �2) e0) : �2

1



More rules:

D[[�; x : � ` x : � ]] = �; x : � ` x : �

D[[� ` e1 : � ! �
0]] = � ` e

0

1
: � ! �

0 D[[� ` e2 : � ]] = � ` e
0

2
: �

D[[� ` (e1 e2) : � 0]] = � ` (e0

1
e

0

2
) : � 0

D[[� ` (�x : �:e) : � ! �
0]] = � ` (�x : �:e0) : � ! �

0

where D[[�; x : � ` e : � 0]] = �; x : � ` e
0 : � 0

:

3 Abstract Data Types (ADTs)

In our programs we would like to be able to limit the interaction between pieces of code. We should able to

provide an interface by which seperate parts can interact, and force that to be the only method of interaction.

In Java/C++ this is achieved using public/private �elds in classes. Public �elds can be accessed by anyone,

while private �elds can only be referred to within their containing class.

Here is a Java-like example, implementing an integer set as a binary tree:

class intset{

public boolean contains(int x);

public intset union(intset i);

private intset left, right;

private int value;

}

The public interface has only the operations union and contains. The binary structure should be transparent

from the outside.

We will hide things by using Existential Data Types

4 Existential Data Types

The Curry-Howard isomorphism gives us 9X:� $ 9x:�. The existential type should be in some sense dual

to the universal. We will think of 9X:� as a pair [� 0
; v] with v : �f� 0

=Xg. Here �
0 is the witness type. We

contstruct v and hide � 0 using 9X . Externally we can't get � 0 back.

Here are the rules for the isomorphism:

�; � ` �f�0
=xg

�;� ` 9x:�

�;� ` 9x:�1 �; x
0; �; �1fx

0
=xg ` �2

�;� ` �2 with x
0 not free in �; �1; �2 (\fresh")

And the corresponding type rules:

�; � ` e : �f�=Xg

�;� ` pack[x = �; e] : 9X:�

�;� ` e1 : 9X; �1 �; X
0; �; X : �1fX

0
=Xg ` e2 : �2

�;� ` unpack e1 as [X
0
;X] in e2 : �2 with X

0 \fresh"

2


