
CS611 Lecture 32 Type inference, ML polymorphism November 10, 2000
Scribe: Ryan Williams and Niranjan Nagarajan Lecturer: Andrew Myers

1 Introduction

In the strictly typed languages that we have studied so far we have used type declarations to specify the
types of various expressions. But from a programmer’s point of view this requirement is a nuisance and it
would be nice if we could automatically infer the intended types of expressions. This process is called type
inference and in effect involves constructing a proof tree for the type of an expression. To motivate this idea
let us consider an example:

let
square = rec s. fn z. z*z

in
(fn f. fn x. fn y.

if (f x y)
(f (square x) y)
(f x (f x y)))

How do we infer the type of this expression? Well, we first note that z is constrained to be of type int as
the ∗ operator is applied to it. This forces square to have type int→ int and x to have type int. We can also
see that (f x y) needs to be of type bool (as it appears as the test in an if-expression) and since y and(f x y) are
used in the same positions in applications of f, y needs to have the same type i.e. bool. Therefore f must have
type int→ bool → bool and the type of the entire expression is (int→ bool → bool) → int → bool → bool.

The process that we have discussed above can be formalized. We start off by running the ordinary type-
checking algorithm on the given expression. In places where the type of an expression is not known we use
new type variables instead. The type-checking algorithm would then place restrictions on the type variables
in the form of type equations. The resulting set of type equations is then unified to determine the type of
the expression. An illustration of this process in action is given by the following proof tree:

T 2 = int→ T 6
f :T 2, x :T 5 � f : int → T 6 f :T 2, x :T 5 � 1: int

f :T 2, x :T 5 � (f 1):T 6
f :T 2 � (fn x. (f 1)) :T 1(= T 5 → T 6)

(fn f. fn x. (f 1)) :T 2 → T 1
y :T 3 � y :T 4(= T 3)

(fn y. y) :T 2(= T 3 → T 4)
(fn f. fn x. (f 1)) (fn y. y) :T 1

The equations T 2 = T 3 → T 4, T 1 = T 5 → T 6, T 2 = int → T 6 and T 4 = T 3 then need to be unified
to get T1, the type of the initial expression, and this process will be described in the next section.

2 Unification

In our system of type inference, the types our derivations generate are type expressions. The set of type
expressions may be defined inductively:

• Ti (a type variable) is a type expression, where i is a natural number.

• If τ1, t2 are a type expressions, then τ1 → t2 is also a type expression.

Throughout this section, τ1 and τ2 will denote arbitrary type expressions. A type equation will be an
expression of the form τ1 = τ2.

1

After performing a type derivation using our type inference rules above, we obtain a pile of type equations
for which we wish to find a solution, i.e. types to substitute for the type variables such that the equations
are satisfied.

Given an equation τ1 = t2, we wish to match components of the structure of the two expressions in some
way (unifying them), generating more type equations which will allow us to solve for the unknowns. For
example, suppose τ1 = int → T1 and τ2 = T2 → (T3 → bool). The new equations we may infer from the
structure of these two expressions are T2 = int and T1 = T3 → bool.

The algorithm we will describe for performing unification is Robinson’s (1965). Given a set of type
equations E, it returns the weakest substitution of types for type variables that satisfies all the equations of
E. “Weakest” means that it contains the fewest number of assignments from type variables to types. Let
us formally define what we mean:

Definition. A substitution S is a partial mapping from the set of type variables to types, which is only
defined for a finite number of type variables. Thus, there are always infinitely many Ti for which S(Ti) is
not undefined.

Definition. Let S1 and S2 be substitutions. S1 is weaker than S2 if there exists a substitution S3 which
is not the identity function and S2 = S3 ◦ S1. Here, ◦ acts not as function composition, but as an map
“extender”. S3 extends S1 in the following sense:

S3 ◦ S1(Ti) = S1(Ti) if S1(Ti) is defined

= S3(Ti) if S3(Ti) is defined

= undefined otherwise

For an example, suppose we wish to unify E = {(τ0 → τ1) → τ2, τ3 → (bool → int)}, and find that the
substitution S = [τ0 �→ bool, τ2 �→ (bool → int), τ3 �→ (bool → τ1)] will satisfy the equations of E. However,
S′ = [τ2 �→ (bool → int), τ3 �→ (τ0 → τ1)] is also sufficient for unification (this substitution causes both sides
of the equation to be the same syntactically), and S′ is weaker than S since S′ = [τ0 �→ bool] ◦ S.
Definition. The weakest substitution for E will be S such that for all S′ 	= S which are sufficient for
unifying the equations of E, there exists a non-identity S′′, such that S′ = S′′ ◦ S.

Let E be a set of type equations. Unify(E) will return the weakest substitution that satisfies the
equations of E. The inductive definition of Unify is as follows:

Unify(∅) = ∅
Unify({T = τ} ∪ E) = Unify(E{τ/T }) ◦ [T �→ τ])(∗)
Unify({B = B} ∪ E) = Unify(E)(∗∗)
Unify({B = B′} ∪ E) = fail (ifB 	= B′)
Unify({T = T } ∪ E) = Unify(E)

Unify({τ1 → τ2 = τ3 → τ4} ∪ E) = Unify({τ1 = τ3, τ2 = τ4} ∪ E)

(*) where T is a type variable, given that T is not free in the type expression τ .
(**) where B is a base type.

Note that the procedure Unify terminates on any E:
For every inductive step of the procedure above, we either
(1) reduce the number of equations for types, or
(2) reduce the equations to cases which will make the number of equations smaller (the last case

in the inductive definition above).

2

3 Type reconstruction

We wish to develop an algorithmR which will actually perform the type inference for us, using the unification
procedure given above. R(e,Γ, S) = 〈τ, S′〉 will indicate that when reconstruct the type of e given a type
context Γ and substitution S, we infer that e is of type τ with respect to S′, a substitution that is stronger
than S. More precisely, S′ is the weakest substitution that is stronger than S and S′(Γ) � e : S′(τ), which
brings us to the definition of substitution on a set of expressions:

Definition. Let S be a substitution defined on the type variables Ti1 , . . . , Tin . For an arbitrary set of
expressions A, S(A) ≡ {e{S(Tij)/Tij}|e ∈ A}. Informally, S(A) is the set of expressions that result when
we feed each e ∈ A individually into S.

Note that since e and � are not type variables, S′(Γ) � e : S′(τ) = S′(Γ � e : τ); that is, e type-checks
with respect to the substitutions of S′.

We shall extend our function Unify to also take a substitution as an argument, to give a “context of
substitutions” for unifying the set of equations E. We define Unify(E,S) ≡ Unify(S(E))◦S, where (Note
that Unify(S(E)) is a substitution, so this definition makes sense.) The inductive definition of R is as
follows:

R(n,Γ, S) = 〈int, S〉
R(#t,Γ, S) = 〈bool, S〉
R(#f,Γ, S) = 〈bool, S〉
R(x,Γ, S) = 〈Γ(x), S〉

R(e1 e2,Γ, S) = let 〈T1, S1〉 = R(e1,Γ, S) in let 〈T2, S2〉 = R(e2,Γ, S1) in 〈T ∗, Unify({T2 → T ∗ = T1}, S2)〉
R(fn x.e,Γ, S) = let 〈T1, S1〉 = R(e,Γ[x �→ T ∗], S) in 〈T ∗ → T1, S1〉

where T ∗ is not used in e,Γ, S. (Note this is a stronger condition than “T ∗ is a free variable in e,Γ, S.”)

Below, we give an example of R in action:
R((fn x.x) 1, ∅, ∅) =
let 〈T1, S1〉 = R((fn x.x), ∅, ∅) in let 〈T2, S2〉 = R(1, ∅, S1) in 〈T ∗, Unify({T2 → T ∗ = T1}, S2)〉
Noting that R((fn x.x), ∅, ∅) = let 〈T1, S1〉 = R(x, [x �→ T ∗], ∅) in 〈T ∗∗ → T1, S1〉) = 〈T ∗∗ → T ∗∗, ∅〉, the

above is

= let 〈T2, S2〉 = R(1, ∅, ∅) in 〈T ∗, Unify({T2 → T ∗ = T ∗∗ → T ∗∗}, ∅)〉
Noting that R(1, ∅, ∅) = 〈int, ∅〉, this is equal to

= 〈T ∗, Unify({int → T ∗ = T ∗∗ → T ∗∗}, ∅)〉
= 〈T ∗, Unify({int = T ∗∗, T ∗ = T ∗∗}, ∅)〉
= 〈T ∗, Unify({T ∗ = int}, [T ∗∗ �→ int])〉
= 〈T ∗, [T ∗ �→ int, T ∗∗ �→ int]〉.
Thus, the type of the expression (fn x.x) 1 is T ∗ with respect to the substitution [T ∗ �→ int, T ∗∗ �→ int],

which is simply int.

4 Polymorphism

Note that in the last section we got:

R((fn x.x), ∅, ∅) = 〈T ∗∗ → T ∗∗, ∅〉
Here (fn x.x) has a type where the type identifiers have not been resolved or in other words we have a
type schema. In general the type reconstruction algorithm may not resolve the types fully and we can take

3

advantage of this feature of the algorithm to get polymorphism. Polymorphism which means many forms
allows us to use the same expression at various points in a program where the expression can have different
types at different points. An example of this is id = (fn x.x) which has type T ∗∗ → T ∗∗, a type schema, which
can be instantiated by setting T ∗∗ to say int and using id where a function of type int → int is required.
Polymorphism is clearly a convenience for the programmer as it avoids the need to create functions for each
of the schema instances. The somewhat suprising aspect of Polymorphism is the fact that one can do type
inference with polymorphic types as well.

In order to introduce polymorphism formally into our language (and not just as a by-product of the type
reconstruction algorithm) we allow variables to have types that are type schemas and we ensure that at
every use of the variable we select an instance of the type schema. We then also allow let to bind variables
to polymorphic terms. In addition we modify our typing rules and the definition of a type context in the
following fashion:

Γ ∈ V ar → σ
σ ::= τ | ∀T1, . . . , Tn.τ , where FTV(τ) ⊆ {T1, . . . , Tn}
∆ = {T1, . . . , Tn} (= set of legal type variables)
∆ � τ (= τ is a legal type in δ i.e. it is well formed.)
∆; Γ � e :τ (= using type variables in ∆ and in the type context Γ, e has type τ)

Our new typing rules then are:

∆; Γ, x :τ � x :τ
∆ � τ i∈1...n

∆;Γ, x : (∀T1, . . . , Tn.τ) � x :τ{τi/Ti
i∈1...n}

∆;Γ � e1 :τ → τ ′ ∆;Γ � e2 :τ ∆ � τ, τ ′

∆;Γ � (e1 e2) :τ ′
∆;Γ, x :τ � e :τ ′ ∆ � τ, τ ′

∆;Γ � (fn x.e) :τ → τ ′

∆ ∪ {T1, . . . , Tn}; Γ � e1 :τ ∆;Γ, x :∀T1, . . . , Tn.τ � e2 :τ ′ ∆ ∪ {T1, . . . , Tn} � τ ∆ � τ ′

∆;Γ � (let x = e1 in e2) :τ ′

Here is an example of the typing rules in action:

{T1}; ∅ � (fn x.x) :T1 → T1

∅; id :∀T1.T1 → T1 � id : int→ int

∅; id :∀T1.T1 → T1 � id 2: int
∅; ∅ � (let id = (fn x.x) in id 2: int

The type inference and reconstruction algorithm for our new language is the same as before for all cases
other than for let and for variables. The algorithm given here is due to Milner and it is built into ML.
The basic idea here is that if a variable has a type which is a type schema then the schema needs to be
instantiated when the variable is used. Also while reconstructing the type of an expression that is bound to
a variable in a let expression if a type expression with free type variables is obtained then we should map
the type of the variable to a type schema with the appropriate free type variables bound in a ∀ type. Here
are the appropriate rules for the reconstruction algorithm (Note: the rule for let and letrec are similar and
so here we give the more general letrec rule):

W(x,Γ, S) = case Γ(x) of
τ = 〈τ, S〉

| ∀T1, . . . Tn.τ = 〈τ{Tfi/Ti}, S〉

W(letrec x = e1 in e2,Γ, S) =
let Γ′ = Γ[x �→ Tf] in let 〈T 1, S1〉 = W(e1,Γ′, S) in
let S2 = Unify({Tf = T 1}, S1) in
let Γ′′ = Γ[x �→ Generic(T 1, Γ, S2)] in
W(e2, Γ′′, S2)

Generic(τ, Γ, S) = ∀T1, . . . , Tn.S(τ), where {T1, . . . , Tn} = FTV (S(τ)) − FTV (S(Γ))

4

