
CS611 Lecture 30 Recursive Types November 6, 2000
Scribe: Cristina Patron and Suzanne Shontz Lecturer: Andrew Myers

1 tF Example

In the last lecture, we finally arrived at a type-safe universal language named tF. Here are the formation
rules for tF:

e ::= x | b | fn x :τ.e | e1 e2 | e1 + e2 | 〈e1, e2〉 | first e | rest e | inl e | inr e | case e0 e1 e2

| rec y :τ.fn x.e | let x = e1 in e2

τ ::= B | τ → τ2 | τ1 ∗ τ2 | τ1 + τ2

where e is an expression, and τ are the typed expressions.

The following is an example of a tF program:

let factorial = (rec fact : int → int.
fn n. if(n 〈 2)1(fact(n − 1) ∗ n)) in

factorial(5)

This program has type int and evaluates to 120.

2 Type Equivalence

In many languages, there are multiple ways to write a single type. Thus, it becomes important to determine
when type expressions τ1 and τ2 represent the same type. We write � τ1

∼= τ2 when τ1 and τ2 are equivalent
types. The typing rule that allows us to make use of equivalence is this:

� τ1
∼= τ2 Γ � e :τ1

Γ � e :τ2

This means that if τ1 and τ2 are equivalent types, if e has type τ1 then it also has type τ2 in the same context.

For an example of equivalent types, suppose we extend tF with (τ1 ∗ τ2)→ τ3
∼= τ1 → (τ2 → τ3). Recall

that curried functions are applicable to pairs and uncurried functions are applicable to single expressions.
(τ1 ∗ τ2) → τ3

∼= τ1 → (τ2 → τ3), because we can write down a (compiler-inserted) bijection between the
types for curry and uncurry as follows:

C[[e : (τ1 ∗ τ2)→ τ3]] = C[[λx :τ1.λy :τ2.e〈x, y〉 :τ1 → (τ2 → τ3)]]

C[[e :τ1 → (τ2 → τ3)]] = C[[λp :τ1 ∗ τ2.e(π1p)(π2p) :(τ1 ∗ τ2)→ τ3]]

2.1 Name vs. Structural Equivalence

When trying to decide when two types are equivalent, we must also consider name equivalence and structural
equivalence. These two types of equivalence are language-dependent. For example, in tF, two types are
equivalent if they have identical syntactic form. This is a restricted form of structural equivalence. However,
in C, Java, and Pascal, the name of a particular data structure is part of its type identity. For example, in
C:

struct foo{int a, b; } �∼= struct bar{int a, b; }
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since the name foo �= the name bar. However, in C, it is possible to get structural equivalence using the
typedef command as follows:

typedef struct foo Foo;

In this case, Foo is declared to be another name for the type struct foo, and Foo ∼= struct foo. In Modula-3,
one can bind a type to a name to brand it with a unique identity. Thus, name equivalence is achieved
through explicit branding. To see how this works, consider the following example:

TYPE intpair = RECORD x, y : int END

TYPE foo = BRANDED intpair, bar = BRANDED intpair;

Then foo �∼= bar �∼= intpair, but intpair ∼= RECORD x, y : int END via structural equivalence.

3 Data Structures

Now that we understand type equivalence in tF, we would like to explore the possibility of adding data
structures to the langugae. For example, in C, we can create a binary tree as follows:

struct Tree{
bool leaf;
union{

struct{Tree �left, Tree �right; } children;
int value;

}u;
}

How might we express this in our type notation? Here’s an attempt:

τ = bool ∗ (τ ∗ τ + int).

Unfortunately this is an equation and cannot be used as it is. Instead we need the solution to the above
equation.

Another example of an expression that we cannot assign a type to in this langugae is (λ x (x x)). In
lambda calculus, we can write down the following terms:

(λ x (x x))(λ x (x x)) (diverges)

(λ x (x x))(λ y #f) ⇓ #f.

The first term diverges and can be assigned a type τ that solves the equation τ = τ → τ1 for any τ1. The
second terms does not diverge, but in order to assign a type to the above expression, we need the solution
to the equation τ = τ → bool.

4 Fixed Point Type Constructor

It is clear from these examples that in order to make tF more useful to us, we need to be able to solve
equations of the form X = τ where X is a type variable mentioned in the type expression τ . In order to
solve these equations, we assume that we have a type constructor µX.τ which produces the solution to the
above equation. This is an analogue of rec x e for types and is similar to an ML datatype declaration.
Using this new type constructor, we can define many useful types such as:
tree � µT.T ∗ T + int (binary tree)
nat � µN.unit+N
0 � inl(#u) :nat
1 � inr(inl(#u)) :nat
2 � inr(inr(inl(#u))) :nat

2



...
successor � λn :nat.inr(n) (increment)

In order to fully understand types, we must also study open and closed recursion. In many modern lan-
guages, types are allowed to refer to one another arbitrarily (even if they are in different source files)! Open
recursion occurs when the type expression is not closed. (The opposite of this is, of course, called closed
recursion). Open recursion requires taking a fixed point over all types in scope.

For example, consider the following class definitions for Node and Edge:

class Node{
Edge[ ] outgoing edges;
Edge[ ] incoming edges;

}

class Edge{
Node from;
Node to;

}

Notice that Node refers to Edge and vice versa. So, we must take a fixed point when assigning their types.
Thus, we have

Node = µN.array[N ∗ N] ∗ array[N ∗ N]

and
Edge = µE.(array[E] ∗ array[E]) ∗ (array[E] ∗ array[E]).

5 Revisiting Type Equivalence - (fold/unfold)

Unfortunately, by taking fixed points over all types in scope, we have created a problem for the type
equivalence of tF. The difficulty is that we no longer have one unique syntactic form for a given type.
Now if we suppose that µX.τ solves X = τ , we can substitute µX.τ for X wherever it appears in τ .
So, for the natural numbers, we get µN.(unit + N) = µN.(unit + (µN.(unit + N)) and nat = (unit + nat) =
(unit+ (unit+ nat)) . . .
In order to develop a new formal definition of type equivalence, we will define the unfolding of type µX.τ to
be τ{µX.τ/X}. And, we will write µX.τ ∼= τ{µX.τ/X} to mean that µX.τ and its unfolding are equivalent
types. Implicitly, this gives us the following notion of equivalence: type expressions are equivalent if they
are fully substitutable for each other. A weaker notion of equivalence is that the types are isomorphic and
the expressions must be explicitly mapped between types.
It will be more straightforward for now if we consider a recursive type and its unfolding to be isomosphic
and explicitly shift values between the two types. In order to move between the recursive type µX.τ and the
corresponding unfolding τ{µX.τ/X}, we define two new operators named fold and unfold:

fold :τ{µX.τ/X} → µX.τ

unfold :µX.τ → τ{µX.τ/X}.

Note that the fold operator packages the concrete value as the abstract value, while the unfold operator
allows access to the internals of the value of the recursive type. In addition, there is a bijection between fold
and unfold, and their types are isomorphic. In Winskel, (fold/unfold) are referred to as (abs/rep).
Next, we will give the typing and evaluation rules for the fold and unfold operators.
The typing rules are as follows:

Γ � e :τ{µX.τ/X}
Γ � foldµX.τe :µX.τ
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Γ � e :µX.τ

Γ � unfold e :τ{µX.τ/X}
The evaluation rule is:

unfold(foldµX.τe)→ e,

where the new evaluation contexts are given by

C ::= . . . | fold C | unfold C.

Now that we have the typing and evaluation rules for the new operators fold and unfold, we would like to
prove that (λ x(x x)) can be typed as µT.T → bool.
In order to accomplish this, we first add the following declarations to explicitly show the types of fold and
unfold as applied to the above expression:

foldµT.T→bool(λx : (µT.T → bool).((unfold x) x)).

Now we can prove that (λ x (x x)) can be typed as µT.T → bool making use of our typing rules. Here is
the proof tree:

{x :µT.T → bool} � x : (µT.T → bool)
{x :µT.T → bool} � unfold x : (µT.T → bool)→ bool . . .

{x :µT.T → bool} � ((unfold x) x) :bool

� [λx : (µT.T → bool).((unfold x) x)] : (µT.T → bool)→ bool

� [foldµT.T→bool(λx : (µT.T → bool).((unfold x) x))] :µT.T → bool

The fold and unfold operators are used somewhat differently in real languages. In Java and Modula-3,
recursive types and their unfoldings are substitutable. In these languages, the fold and unfold operators are
automatically supplied whenever needed. In ML, the datatype constructor is fold. And, the match operation
provides an implicit unfold for each arm of the sum. In CLU and C, explicit use of operators is required to
shift between the abstract and concrete values. CLU uses up and down operators to replace fold and unfold.
In each of these languages there is no ”pure” recursive type constructor; recursive types are constructed using
type constructors with other functionality. For example, in ML, datatypes are used to introduce recursion
but are also sum types.

6 Capturing the Untyped λ

Observe that all λ calculus expressions can be used in any context, and that evaluation never gets stuck.
Thus, we would like to figure out how to capture the untyped λ in a typed language. Lambda calculus terms
have the following type: Λ = µX.X → X . Note that this is isomorphic to (µX.X → X) → (µX.X → X),
i.e.,

Λ = µX.X → X ∼= (µX.X → X)→ (µX.X → X)

So Λ ∼= Λ→ Λ.
We can develop a translation D from λ to λ→µ. We will do this through using the fold and unfold operators
as follows:

• D[[x]] = x

• D[[λ x e]] = (foldµX.X→X(λx :Λ.D[[e]]))

• D[[e1 e2]] = (unfold D[[e1]]) D[[e2]]

Now that we have figured out how to translate from λ → λ→µ, we can use recursive types to write the Yτ

operator as an ordinary expression. We can then desugar recf : τ.er as Yτ (λf : τ.er) and dispense with the
built-in operator rec.
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7 Constructing a Model

Currently our semantics model τ as having the domain T [[τ ]]. We must determine how to model the domain
for the new type constructor, µX.τ , i.e., we must determine how to model T [[µX.τ ]]. Earlier in the lecture,
we noted that µX.τ ∼= τ{µX.τ/X}. Thus, we expect isomorphism to hold in their domains as well. Thus,
we hope that

T [[µX.τ ]] ∼= T [[τ{µX.τ/X}]].

For an example of this, consider the natural numbers. Let N = T [[µN.unit + N]]. We wish to require that
T [[µN.unit N]] ∼= T [[unit + (µN.unit + N)]], i.e., that N ∼= unit + N. Modeling these types require solutions to
domain equations that we have been using all along.
In order to solve the domain equations, we assume that a constructor for recursive domains exists and is
given by µD.F(D), where the functor F maps one domain into another domain. If D = µX.F(X), then
F(D) produces a domain related to D by continuous functions up and down that are inverses of one another.

We define up and down as follows:
down : D → F(D)

up : F(D)→ D,

where D ∼= F(D).

Because up and down are continuous,

d0 � d1 � d2 � . . . ∈ D ⇒ up(
⊔

di) =
⊔

up(di)

e0 � e1 � e2 � . . . ∈ F(D)⇒ down(
⊔

ei) =
⊔

down(ei).

Recursive types also introduce names for types. Thus we need a type environment χ : Type → Domain
which we define inductively. In our definition, T [[τ ]]χ gives the domain corresponding to type τ , given type
variables whose meaning is defined by χ.

Here are the rules for evaluating T [[τ ]]χ inductively:

• T [[unit]]χ = U

• T [[int]]χ = Z

• T [[X ]]χ = χ(X)

• T [[τ1 ∗ τ2]]χ = T [[τ1]]χ × T [[τ2]]χ

• T [[τ1 → τ2]]χ = T [[τ1]]χ → (T [[τ2]]χ)⊥

• T [[µX.τ ]] X = µD.T [[τ ]]χ[X → D]
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