
CS611 Lecture 3 Small-step semantics 08/30/00
Scribe: Abhinandan Das and Rohit Fernandes Lecturer: Andrew Myers

Small step semantics

The semantics that we have seen so far (eg. 〈c, σ〉 ⇓ σ′) directly depicts, in a single step, the final state (σ′)
obtained when a command (c) is executed in the current state of the system (σ). This style of semantics is
known as large step semantics (or natural semantics).

However, it is sometimes necessary to have a fine grained view of execution of a command as a series of
smaller atomic substeps from one configuration to another. This is required, for example, to express parallel
execution or for tracing the execution of a command.

Small step semantics is used to describe the execution of a command in terms of several smaller steps
from one configuration to another.

eg.〈c, σ〉 → 〈c′, σ′〉 . . . → 〈c′′, σ′′〉

Consider, for example, the configuration:

〈if X < Y then X := 0 else skip, [X �→ 1, Y �→ 2]〉

One way of expressing this as a series of incremental steps could be:

〈if X < Y then X := 0 else skip, [X �→ 1, Y �→ 2]〉
→ 〈if 1 < y then X := 0 else skip, [X �→ 1, Y �→ 2]〉
→ 〈if 1 < 2 then X := 0 else skip, [X �→ 1, Y �→ 2]〉
→ 〈if true then X := 0 else skip, [X �→ 1, Y �→ 2]〉
→ 〈X := 0, [X �→ 1, Y �→ 2]〉
→ 〈skip, [X �→ 0, Y �→ 2]〉

In small step semantics, any configuration of the form 〈skip, σ〉 is called a final configuration. Any
configuration that represents a computation that terminates can be brought to the form 〈skip, σ〉.

Since booleans and arithmetic expressions do not alter the state (no side effects) in IMP, we can represent
one small-step of a boolean or arithmetic expression as:

〈a, σ〉 → 〈a′, σ〉 (a = Arithmetic expression)

〈b, σ〉 → 〈b′, σ〉 (b = Boolean expression)

However, since commands can change state, a single small-step in case of a command may be represented,
in general, as:

〈c, σ〉 → 〈c′, σ′〉 (c = Command)

For the sake of generality, we shall represent the new state after a small-step computation of a boolean or
arithmetic expression in state σ as σ′ (as opposed to σ).

Tracing command executions via small step semantics

• 〈skip, σ〉: Since 〈skip, σ〉 represents a final configuration, we shall not have any small step rule for its
evaluation.

1



• 〈X := a, σ〉: Here a is an arithmetic expression and must first be evaluated to a number, via (possibly
repeated) applications of the inference rule:

〈a, σ〉 → 〈a′, σ′〉
〈X := a, σ〉 → 〈X := a′, σ′〉

Once ‘a’ has been reduced to a number, say n, we can then apply the following axiom to reach the
final state:

〈X := n, σ〉 → 〈skip, σ[X �→ n]〉
• 〈a0 ⊕ a1, σ〉: (⊕ is a generic symbol for a mathematical operator).
The following rules enforce left to right evaluation:

〈a0, σ〉 → 〈a0
′, σ′〉

〈a0 ⊕ a1, σ〉 → 〈a0
′ ⊕ a1, σ

′〉
〈a1, σ〉 → 〈a1

′, σ′〉
〈n ⊕ a1, σ〉 → 〈n ⊕ a1

′, σ′〉
〈n0 ⊕ n1, σ〉 → 〈n2, σ〉 (n2 = n0 ⊕ n1)

• 〈c0; c1, σ〉: Presumably, the semi-colon operator is a left to right one:
〈c0, σ〉 → 〈c0

′, σ′〉
〈c0; c1, σ〉 → 〈c0

′; c1, σ
′〉

〈skip; c, σ〉 → 〈c, σ〉
• 〈 if b then c0 else c1, σ〉:

〈b, σ〉 → 〈b′, σ′〉
〈if b then c0 else c1, σ〉 → 〈if b′ then c0 else c1, σ

′〉
For the case where the boolean expression evaluates to true, we have the axiom:

〈if true then c0 else c1, σ〉 → 〈c0, σ〉
For the false case:

〈if false then c0 else c1, σ〉 → 〈c1, σ〉
• 〈while b do c, σ〉:

〈b, σ〉 → 〈b′, σ′〉
〈while b do c, σ〉 → 〈while b′ do c, σ′〉

〈while false do c, σ〉 → 〈skip, σ〉
For the case when the looping condition is true, one needs to keep track of the boolean test condition
for the next iteration, and hence cannot discard it:

〈while b do c, σ〉 → 〈if b then c;while b do c else skip, σ〉

Advantages of Small-step semantics over Natural semantics

Using natural semantics, we could not describe computations that didn’t halt. Using small step seman-
tics, not only can we capture the notion of a non terminating computation, but we can also distinguish
between an error condition and a non terminating computation.
eg. In natural semantics, we cannot find a σ′ satisfying 〈X := 1/0, σ〉 ⇓ σ′ – and this error condition
was indistinguishable from a non terminating computation.

In small step semantics, we can distinguish between a non terminating computation and an error
condition:
eg. In case of the divide by zero error condition, when we reach the axiom:

2



〈n0 ⊕ n1, σ〉 → 〈n2, σ〉(n2 = n0 ⊕ n1)

we get ‘stuck’ and cannot proceed further, since we are unable to find a number n2 satisfying n2 =
n0 ⊕ n1. However, in case of an infinite computation, we never get ‘stuck’ – we just have an infinite
sequence of steps.

Small step semantics also helps us deal with the notion of parallelism. Consider a parallel computation
of the form 〈cobegin c0 c1, σ〉. Its execution can be tracked by the following small step inference rules:

〈c0, σ〉 → 〈c0
′, σ′〉

〈cobegin c0 c1, σ〉 → 〈cobegin c0
′ c1, σ

′〉
〈c1, σ〉 → 〈c1

′, σ′〉
〈cobegin c0 c1, σ〉 → 〈cobegin c0 c1

′, σ′〉
〈cobegin skip skip, σ〉 → 〈skip, σ〉

Equivalence of natural and small-step semantics

We now need to show that the two semantics (natural and small-step) that we used to describe IMP
are equivalent to each other, viz. both semantics give the same evaluation for all legal programs.

Notation: Let 〈c, σ〉 →∗ 〈c′, σ′〉 denote the statement that the configuration 〈c′, σ′〉 can be reached
from 〈c, σ〉 in 0 or more ‘small-steps’.
To prove the equivalence of the two semantics, we need to show:

〈c, σ〉 ⇓ σ′ ⇔ 〈c, σ〉 →∗ 〈skip, σ′〉
Let us first prove that at least for arithmetic expressions, the above holds, viz:

〈a, σ〉 ⇓ n ⇔ 〈a, σ〉 →∗ 〈n, σ〉
Let us prove this case by case for all possible types of arithmetic expressions:

– Number n: 〈n, σ〉 ⇓ n ⇔ 〈n, σ〉 →∗ 〈n, σ〉 (Trivially true)
– Variable X: 〈X, σ〉 ⇓ n ⇔ 〈X, σ〉 →∗ 〈n, σ〉

LHS ⇒ n = σ(X)⇒ 〈X, σ〉 → 〈n, σ〉 ⇒ 〈X, σ〉 →∗ 〈n, σ〉.
Similar for converse.

– 〈a0 ⊕ a1, σ〉 ⇓ n ⇔ 〈a0 ⊕ a1, σ〉 →∗ 〈n, σ〉
Can show this using structural induction on “size” of the arithmetic expression. By size, we mean
the height of the parse tree corresponding to the arithmetic expression.
Let P(m) denote the hypothesis 〈a, σ〉 ⇓ n ⇔ 〈a, σ〉 →∗ 〈n, σ〉, if height(a)=m
Base case: Height of parse tree of expression is 1 – already proven.
Induction step: Assume P(i) holds for all a whose parse tree has height 1 ≤ i ≤ m. Consider
a0 ⊕ a1 of height m+ 1. By induction hypothesis,

〈a0, σ〉 ⇓ n0 ⇔ 〈a0, σ〉 →∗ 〈n0, σ〉 . . . (1)
〈a1, σ〉 ⇓ n1 ⇔ 〈a1, σ〉 →∗ 〈n1, σ〉 . . . (2)

Also, 〈a0 ⊕ a1, σ〉 ⇓ n ⇒ n0 ⊕ n1 = n

(1)⇒ 〈a0 ⊕ a1, σ〉 →∗ 〈n0 ⊕ a1, σ〉
(2)⇒ 〈n0 ⊕ a1, σ〉 →∗ 〈n0 ⊕ n1, σ〉

Also, 〈n0 ⊕ n1, σ〉 → 〈n, σ〉
Thus 〈a, σ〉 ⇓ n ⇒ 〈a, σ〉 →∗ 〈n, σ〉.
Working backwards on similar lines, the converse follows.

3


