
CS611 Lecture 28 Logical Relations, Strong Normalization November 1, 2000
Scribe: Nikita Proskourine, Matt Harren Lecturer: Andrew Myers

In the last class we showed that the typing rules for the typed lambda calculus (λ→) are sound with
respect to operational semantics. Today we give another argument that all λ→ programs terminate using
logical relations.

How do we show that all λ→ programs terminate? One approach would be to show that the size of a
program decreases as it executes; however, this is not necessarily the case. For example, take

(λf : int → int . (+ (f 0) (f 1))) (λy : int . (∗ y 2))

Instead, we will show that the size of the type of a program decreases as the program executes.

• Idea: Show � e : τ ⇒ e ∈ SNτ , where SNτ is the set of strongly normalizing expressions of type τ .

1 Stable Expressions

We’ll use an induction on the type derivation to prove our claim. However, we will need a somewhat
stronger induction hypothesis in order to prove the application case. So instead of strongly normalizing
expressions, we will show the stronger claim that all typed expressions in λ→ are stable expressions. The
stable expressions of a type τ are a subset of the strongly normalizing expressions of type τ which always
result in stable expressions when applied to other stable expressions.

We define the set Tτ of stable expressions with type τ inductively as follows:

Tint = {e | � e : int ∧ e ⇓ n}
Tτ→τ ′ = {e | � e : τ → τ ′ ∧ e ⇓ v ∧ (∀e′ ∈ Tτ . (e e′) ∈ Tτ ′)}

(Additional base types could easily be added, but we will only be concerned with int in this proof. Also,
note that the definition of Tτ is not recursive, since it is based on smaller terms.)

2 Type Contexts

Currently, we are trying to show � e : τ ⇒ e ∈ Tτ . However, this is still not strong enough to allow us to
use induction, because we will need to work with expressions with free variables.

Consider a function γ : Var → Expr that maps variables to stable expressions of the correct type:

γ |= Γ ⇐⇒ ∀x ∈ dom(Γ) . γ(x) ∈ TΓ(x)

For any γ, define a function γ̂ : Expr → Expr that performs the substitution specified by:

γ̂[[n]] = n

γ̂[[x]] = γ(x) ifx ∈ dom(Γ)
γ̂[[x]] = x ifx /∈ dom(Γ)

γ̂[[e0 e1]] = γ̂[[e0]] γ̂[[e1]]
γ̂[[λx : τ . e]] = λx : τ . γ′[[e]]

where γ′ is the same as γ except that it doesn’t map x.

We can now prove this claim:

Γ � e : τ ⇒ ∀γ |= Γ . γ̂[[e]] ∈ Tτ

Note that when Γ = ∅ and γ = ∅ we have ∅ � e : τ ⇒ γ̂[[e]] ∈ Tτ , which implies � e : τ ⇒ e ∈ Tτ (which
in turn implies � e : τ ⇒ e ∈ SNτ ).

1



3 The Proof

Prove Γ � e : τ ⇒ ∀γ |= Γ . γ̂[[e]] ∈ Tτ by structural induction on e.

• Case 1: n
Γ � n : τ ⇒ ∀γ |= Γ . n ∈ Tint

by definition of Tint.

• Case 2: x
If γ |= Γ, then γ(x) ∈ TΓ(x). Therefore,

Γ � x : TΓ(x) ⇒ ∀γ |= Γ . γ̂[[x]] ∈ TΓ(x)

• Case 3: e1 e2 (application)
If Γ � e1 e2 : τ , then there exists τ ′ such that Γ � e1 : τ ′ → τ and Γ � e2 : τ ′.

For any γ |= Γ, the induction hypothesis tells us that γ̂[[e1]] ∈ Tτ and γ̂[[e2]] ∈ Tτ ′ . Since γ̂[[e1]] and
γ̂[[e2]] are stable, their application is too (by definition of stable).

Γ � e1 e2 : τ ⇒ ∀γ |= Γ . (γ̂[[e1]] γ̂[[e2]]) ∈ Tτ

⇒ ∀γ |= Γ . γ̂[[e1 e2]] ∈ Tτ

• Case 4: (λx : τ . e) (abstraction)
We’ll assume there is an arbitrary γ |= Γ. We need to show:

– � γ̂[[(λx : τ . e)]] : τ → τ ′

This follows from the Substitution Lemma (This lemma is not proved here, but it is similar to
the lemma proved in the last lecture.)

– γ̂[[(λx : τ . e)]] ⇓ v.
All abstractions are values.

– ∀e′ ∈ Tτ . (γ̂[[(λx : τ . e)]]e′) ∈ Tτ ′ (Stability)
Substituting free variables while applying e′ will give an appropriate set of stable expressions:

γ̂[[(λx : τ . e)]] e′ = (λx : τ . γ̂′[[e]]) e′ = γ̂′[[e]]{e′/x}
Now, we know that (λx : τ.γ̂′[[e]])e′ is in Tτ ′ if γ̂′[[e]]{e′/x} is. Note that γ̂′[[e]]{e′/x} = γ̂′′[[e]],
where γ′′ = γ[x �→ e′].

From the typing rule for abstractions, we know that Γ[x �→ τ ] � e : τ ′. Since γ′′ |= Γ[x �→ τ ], we
can apply the induction hypothesis on γ′′ to obtain

γ′′ |= Γ[x �→ τ ] ⇒ γ̂′′[[e]] ∈ Tτ ′

⇒ γ̂[[λx : τ . e]] ∈ Tτ

4 Agreement of semantics

We can also use logical relations to show agreement between denotational and operational semantics. We
would like to show that each step operationally the meaning of the expressions is the same:

e →∗ v ∧ � e : τ ⇒ C[[� e : τ ]]ρ0 = C[[� v : τ ]]ρ0

We also require the semantics to diverge in exactly the same places:

∃v . e →∗ v ∧ � e : τ ⇐⇒ C[[� e : τ ]]ρ0 �= ⊥

2



And we also should agree on base values:

e →∗ v ∧ � e : int ⇐⇒ C[[� e : int]]ρ0 = v

What about the general case (any type)? Does implication hold in both directions? It does not, because
there are multiple values v that have the same meaning.

Winskel shows how to do these proofs in the reading (11.4).

3


