
CS611 Lecture 27 Soundness of typing rules 10/30/00
Scribe: Daniel Kifer, Yanling Wang Lecturer: Andrew Myers

1 Review

In the last lecture, we defined the syntax for typed lambda calculus. It is similar to the original lambda
calculus - but has an added type annotation (e is an expression, τ is a type and v is a value):

e ::= x|e1e2|λx : τ. e|n|b|u n ∈ Z, b ∈ T, u ∈ U.
τ ::= B|τ1 → τ2 where B is a boolean, integer, or unit.
v ::= λx : τ. e|n|b|u

We also need special operators for the base types (such as PLUS : int → int → int and NOT : bool →
bool). As it turns out, we only need to add type annotation to lambda expressions and it will be sufficient
to build a syntax directed type-checker.

We define the typing context Γ : V ar → Type and define Γ, x : τ to mean “extend Γ with x mapped to
τ”. A type judgement Γ � e : τ means Γ shows that e has type τ when the free variables in e are looked up
in Γ. A program e is considered well-typed (and well-formed) if for some type τ , the empty typing context
shows that e has type τ and we express it in this way: � e : τ . The typing rules we need are:

Γ, x : τ � x : τ
Γ � e1 : τ → τ ′ Γ � e2 : τ

Γ � e1e2 : τ ′
Γ, x : τ � e : τ ′

Γ � (λx : τ. e) : τ → τ ′

2 Denotational Soundness of Typing Rules

Are the typing rules sound from a denotational perspective? Every well-formed program has a meaning and
this meaning should have the same type it was assigned by the type-checker. Formally, our typing rules are
sound if: C[[� e : τ ]]ρ0 ∈ T [[τ ]]. Here we are taking the meaning of the type derivation of e instead of
just the meaning of e and we use ρ0 to represent the empty environment.

We have the following interpretation of types as domains:
T [[int]] = Z

T [[bool]] = T

T [[τ1 → τ2]] = T [[τ1]]→ T [[τ2]]
and we define the notation ρ |= Γ (ρ agrees with Γ) in the following way:

ρ |= Γ def⇐⇒ ∀x ∈ dom(Γ), ρ(x) ∈ T [[Γ(x)]]
By writing the denotational semantics of this language, it should be clear that:

ρ |= Γ⇒ C[[Γ � e : τ ]]ρ ∈ T [[τ ]]
Our soundness claim is a specific example of this, with ρ being the empty environment ρ0 and Γ being

the empty context. The claim can be proven using structural induction on the type derivation and a brief
sketch of this proof follows:

◦ C[[Γ � n : int]] = n ∈ Z = T [[int]] and similarly for booleans and unit.

◦ C[[Γ, x : τ � x : τ ]]ρ = ρx and clearly ρ(x) ∈ T [[τ ]] = T [[Γ(x)]]

◦ C[[Γ � e1 e2 : τ ′]]ρ = C[[Γ � e1 : τ → τ ′]]ρ(C[[Γ � e2 : τ ]]ρ)
From the typing derivation, we have Γ � e1 : τ → τ ′ and Γ � e2 : τ . Since C[[Γ � e1 : τ → τ ′]]ρ and
C[[Γ � e2 : τ ]]ρ have shorter typing derivation, we can use induction hypothesis: C[[Γ � e1 : τ → τ ′]]ρ ∈
T [[τ ]]→ T [[τ ′]] and C[[Γ � e2 : τ ]]ρ ∈ T [[τ ]]. Therefore C[[Γ � e1 e2 : τ ′]]ρ ∈ T [[τ ′]].

◦ C[[Γ � (λx : τ. e) : τ → τ ′]]ρ = λv ∈ T [[τ ]]. C[[Γ, x : τ � e : τ ′]]ρ[x �→ v]
From the type derivation we know Γ, x : τ � e and ρ[x �→ v] |= Γ, x : τ , so C[[Γ, x : τ � e : τ ′]]ρ[x �→ v] ∈
T [[τ ′]]. Clearly C[[Γ � (λx : τ. e) : τ → τ ′]]ρ ∈ T [[τ → τ ′]].
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3 Operational Soundness of Typing Rules

With these denotational semantics, the meaning of a program is its type. 〉From our semantics it is clear that
all well-formed programs terminate and have a meaning. There is no possibility of error or nontermination.
To show that the type system is sound with respect to the operational semantics,however, we need to show
that programs don’t get “stuck.” Formally, we need to prove:

� e : τ ∧ e →∗ e′ ⇒ (e′ ∈ Value ∨ ∃e′′. e′ → e′′)
To do this, we need to prove the following:

• Preservation/Subject Reduction:
� e : τ ∧ e → e′ ⇒ � e′ : τ – The type will be preserved after each step.

• Progress:
� e : τ ⇒ (e ∈ Value ∨ ∃e′′ : e → e′′) – If e is well-formed and is not a value then we can always
take more steps.

These two properties can be used to show soundness by induction on the number of steps in the type
derivation tree. Note that we can no longer write (λ x (x x))(λ x (x x)) in our language, so we have lost
some expressive power through the requirement of well-formedness.

4 Preservation

We know that � e : τ ′ ∧ e → e′ and we wish to show � e′ : τ ′. To do this we will need a stronger inductive
hypothesis: Γ � e : τ ∧ e → e′ ⇒ Γ � e′ : τ . Now since e can step to e′, e must be an application. There
are only three inference rules for application.

i. e1 → e′1
e1 e2 → e′1 e2

ii. e2 → e′2
e1 e2 → e1 e′2

iii. (λx : τ. e)e′ → e{e′/x}

Since e = e1 e2 and � e1 e2 : τ ′, we need to prove � e′1 e2 : τ ′

The proof for the first inference rule is easy.
From the typing derivation we know that:
Γ � e1 : τ → τ ′ Γ � e2 : τ

Γ � e1 e2 : τ ′

and from our inference rules we know that:
e1 → e′1

e1 e2 → e′1 e2

Our induction hypothesis calmly assures us that e′1 will have the same type as e1:
Γ � e1 : τ → τ ′ ⇒ Γ � e′1 : τ → τ ′

Therefore it is decreed that:
Γ � e′1 : τ → τ ′ Γ � e2 : τ

Γ � e′1 e2 : τ ′

The proof for the second inference rule eerily resembles that of the first and is therefore rendered triv-
ial.

The proof for the third rule is much more interesting:
(λx : τ. e)e′ → e{e′/x}

We know Γ � (λx : τ. e)e′ : τ ′ ∧ (λx : τ. e)e′ → e{e′/x} and hope to deduce Γ � e{e′/x} : τ ′.
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From the typing derivation, we know that:
Γ, x : τ � e : τ ′

Γ � (λx : τ. e) : τ → τ ′ Γ � e′ : τ
(λx : τ. e)e′ : τ ′

Now using the magical typed Substitution Lemma:
(Γ, x : τ � e : τ ′) ∧ (Γ � e′ : τ) ⇒ Γ � e{e′/x} : τ ′ – our induction is complete.

5 Substitution Lemma

We prove the substitution lemma by induction on the height of the typing derivation tree.
(Γ, x : τ � e : τ ′) ∧ (Γ � e′ : τ) ⇒ Γ � e{e′/x} : τ ′

Case 1: x
Γ, x : τ � x : τ ∧ Γ � e′ : τ ⇒ Γ � x{e′/x} : τ because x{e′/x} = e′ : τ

Case 2: e1 e2

Because of the type derivation, we know that:
Γ, x : τ � e1 : τ ′′ → τ ′ Γ, x : τ � e2 : τ ′′

Γ, x : τ � e1 e2 : τ ′

According to the inductive hypothesis, e1 and e2 both satisfy the preservation property:
Γ � e1{e′/x} : τ ′′ → τ ′

Γ � e2{e′/x} : τ ′′

Using the typing rule for application, it is plain to see that:
Γ � e1{e′/x} : τ ′′ → τ ′ Γ � e2{e′/x} : τ ′′

Γ � e1{e′/x} e2{e′/x} : τ ′

So we have Γ � e1{e′/x} e2{e′/x} : τ ′. By definition of substitution, Γ � (e1 e2){e′/x} : τ ′ ⇔ Γ �
e1{e′/x} e2{e′/x} : τ ′.

Case 3: (λy : τ ′′. e)
We know:
Γ, x : τ � (λy : τ ′′. e) : τ ′′ → τ ′ ∧ Γ � e′ : τ

and we will be very happy if this implies:
Γ � (λy : τ ′′. e){e′/x} : τ ′′ → τ ′

The typing derivation has informed us that:

Γ, x : τ, y : τ ′′ � e : τ ′

Γ, x : τ � (λy : τ ′′. e) : τ ′′ → τ ′

If x = y then (λy : τ ′′. e){e′/x} = (λy : τ ′′. e). Since nothing changed, preservation is maintained.
If x �= y then we can commute: Γ, x : τ, y : τ ′′ = Γ, y : τ ′′, x : τ .
Using our inductive hypothesis and favorite neural pathways:
Γ, y : τ ′′ � e{e′/x} : τ ′

Γ � (λy : τ ′′. e{e′/x}) : τ ′′ → τ ′ (applying the typing rule for abstraction terms)
Γ � (λy : τ ′′. e){e′/x} : τ ′′ → τ ′

And the lemma is proved!

6 Progress

This is our statement of progress:
� e : τ ⇒ e ∈ V alue ∨ ∃e′′, e → e′′

We can prove this using structural induction.
If e is a value then we are done.
If not, then e must be an application: e = e1 e2.
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Therefore e1 is either a λ-term or, according to the inductive hypothesis, ∃e′1 such that e1 → e′1 and so if
e′ = e′1 e2 then e → e′.
There are two choices now, either e1 is a λ-term and e2 is a value or e1 is a λ-term and, by inductive
hypothesis, ∃e′2 such that e2 → e′2.
If e2 is not a value then let e′ = e1 e′2. Clearly e → e′.
We know that e1 is a lambda expression (e1 = (λ x e3)). If e2 is a value v then e = (λ x e3)v and
e → e3{v/x} = e′ and the induction is complete.
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