
CS611 Lecture 24 Non-local control, exceptions October 20, 2000
Scribe: Adina Costea and Cristian Bucilă Lecturer: Andrew Myers

1 Introduction

Last time, we managed to present a continuation passing style semantics for uF, then we added a few more
rules for the imperative features of uF! and obtained a semantics for this language. We found out that we
could use CPS semantics to describe a lot of features that we already know how to write semantics for. So,
where is the payoff here? Of course there were some nice features about the semantics that we didn’t have
in the direct style. Still it would be nice to see some new abilities. What we’re going to do in this lecture is
to give semantics for three different constructs which are going to show why having a continuation passing
style is nice.

2 setjmp and longjmp

Let’s talk about a feature that can be easily explained using continuations. This is a feature which in C
programming language is implemented by setjmp(j) and longjmp(j). setjmp(j) is going to put the current
continuation in the store at the location j and returns true - that will be the result you’ll get the first time
setjmp is called. longjmp(j) is going to transfer control to the continuation found at the location j, and when
it does so, it will look as though the setjmp(j) just returned again, but this time it’s going to return false.
This is a way of describing what happens in setjmp and longjmp in terms of continuations.

The reason we want such a thing is to be able to stop the evaluation of an expression when an error
occurs without having to test all kind of error conditions in different places.

let j = (ref #u) in
if(setjmp j)

(· · · big computation · · ·)
(· · · handle error · · ·)

If the big computation evaluates (longjmp j) at any point, control will immediatly be transfered to the
error-handling clause.

We can also use setjmp/longjmp to write other more perplexing code:

let j = ref #u in
let c = ref 0 in
let y = setjmp j in

if(!c < 10) (let u = (c := !c + 1) in longjmp j) !c

which is just a fancy way of writing a loop.
We want to write the semantics for uF! + setjmp + longjmp. When we wrote the semantics for uF! we

had things of form C[[e]]ρkσ, where

C[[e]] ∈ Env → Cont → Store → Answer
Cont = Result → Store → Answer
Function = Value → Cont → Store → Answer

Now we want to write the semantics for setjmp. For that, Store has to be allowed to contain continuations.
There are two ways of doing it:

Store = Loc → Value + Cont + Error
or

Value = · · ·+ Cont

We will use the first way. So

C[[setjmp e]]ρk = C[[e]]ρ(check-loc(λlσ. k (true)σ[l �→ k]))
C[[longjmp e]]ρk = C[[e]]ρ(check-loc(λlσ. (check-cont(λk′σ′. k′ (false)σ′)(σl))))

Note: σ was η reduced.

1



3 calcc and throw

ML also has a similar mechanism called callcc. In (callcc e), the expression e has to evaluate to a function
expecting a continuation as its argument. (callcc e) passes the current continuation to that function as a
first-class value. We also have an expression (throw ek ev). This invokes the continuation ek passing ev.

(callcc e) e evaluates to a function expecting a continuation
(throw ek ev) invokes the continuation ek passing ev

In ML, these are actually statically typed and we’re not going to deal with modeling that aspect now.
What do we need to do in order to add callcc and throw to our language? First of all we need to be able to
pass around values that are continuations, because we want to have the ability to send continuations around
as first-class values.

Value = · · ·+ Cont

These features don’t do anything special with the store, so we expect that we shouldn’t need to talk about
the store. We saw last time that as long as the expressions we were writing semantics for didn’t actually use
the store, we didn’t have to talk about the store.

Here is how we compile callcc:

C[[callcc e]]ρk = C[[e]]ρ(check-fun(λf. f k k))
C[[throw ek ev]]ρk = C[[ek]]ρ(check-cont(λk′. C[[ev]]ρ(check-val(λv. k′ v))))

We were able to write down a precise formal specification of what these constructs do. This is nice
because you can waste a lot of English sentences trying to explain what they do informally.

4 cwcc

What if we wanted to have this ability to do callcc but we didn’t want to have this special throw form in our
language? So, what if we wanted the thing that callcc pass to look like a function in our language only that
when you call it doesn’t return normally instead passes the control somewhere else?

(cwcc e)

It turns out that Scheme has such a mechanism. In Scheme we have something called call with current
continuation and what it does is: it evaluates e to a function and passes to that function the current
continuation of this expression, but it makes that current continuation look like a function so in this case we
don’t need to touch our notion of what is a value in our language. How do we do that?

C[[cwcc e]]ρk = C[[e]]ρ(check-fun(λf. f (λvk′. k v) k))

These mechanisms look a lot like exception mechanisms. You can see that we can use them to provide a
lot of the functionality that we get with exceptions – the ability to terminate an existing computation and
return control up an arbitrarily distance in the static and dynamic hierarchy of calls.

5 exceptions

It is natural to ask at this point whether we can model exceptions (like Java exceptions...)

throw s e
try e catch (s x) e’

We need a notion of the exception handling environment.

h ∈ Handlers = Symbols → Cont
h0 = λx. k0, h0 being the default exception handler

C[[e]] ∈ Env → Handlers → Cont → Store → Answer
Cont = Result → Store → Answer

2



Function = Value → Handlers → Cont → Store → Answer

C[[throw s e]]ρhk = C[[e]]ρh(λr. h s r)
C[[try e catch (s x) e′]]ρhk = C[[e]]ρh[s �→ (λv. C[[e′]]ρ[x �→ v]h)k]k
C[[fn x e]]ρhk = k(λvh′k′. C[[e]]ρ[x �→ v]h′k′)
C[[e1 e2]]ρhk = C[[e1]]ρh(check-fun(λf. C[[e2]]ρh(check-val(λv. f v h k))))

If we look at how h is used in this semantics, we notice that it looks just like the use of ρ in uF with
dynamic scope. The function body is evaluated with a handle environment that is dynamic – not the
environment in effect when the function term was evaluated. This makes sense because we could simulate
exceptions handlers in a language with dynamic scope and first-class continuations putting the handlers into
ordinary variables. We argued earlier that dynamic scope is bad for modularity, and in fact it can cause
trouble for exception handling too – for example, it is possible to “accidentally” override a dynamically
scoped variable.

3


