
CS611 Lecture 23 Standard(CPS) Semantics 10/18/00
Scribe: Kamen Yotov and Rohit Fernandes Lecturer: Andrew Myers

Introduction

In the previous lecture, we looked at continuations as a programming language construct by defining an
extended version of the λ-Calculus.In this lecture, we try to use continuation as a feature used for describing
denotational semantics. Continuation can be thought of as the part of the program yet to be executed.
Continuations help us to model non-hierarchical control transfers in programs.

Continuation is modelled as a function whose domain equation is given by :

Cont = Result→ Answer

We do not actually care about the domain of Answer. So, continuation can also be thought of as a
function which does not return as we are usually not concerned with the return value while writing the
semantics. Hence, we are free to choose any domain for Answer. A possible choice is taking Answer to be
identical to the domain of Result. Another possibility is the unit domain. The domain equations pertaining
to these two choices are shown below.

Answer = Result (1)
Answer = U (2)

Recall our definition for Result :
Result = V alue+ Error

The general form of the CPS semantics are of the form

C[[e]]ρk

So our meaning function for an expression takes an environment and a continuation. The understanding
is that the expression e is evaluated and the value obtained is passed to the continuation K. Hence, the
domain of the meaning function is given by

C[[e]] ∈ Env → Cont→ Answer

Here Env can be thought of as the naming context that is the domain from which all variables get their
meaning and Cont can be thought of as the control context which will become clearer later.

When we write the denotation of a program, we are particularly interested in whether it terminates or
not and in the case that it terminates, the particular value it evaluates to. Unfortunately, continuations do
not allow us to care about what they evaluate to. So, we need to define a special continuation called the
halting continuation which is denoted by K0. This is

the continuation in which all programs are evaluated. K0 is the only continuation in which we care about
what Answer evaluates to,namely the result of the program. So K0 is a member of

cont as shown below :
K0 ∈ Cont

It follows that the denotation of a program is given by

C[[e]]ρ0K0

So, K0 is analogous to the special value halt that was defined for the extended λ-calculus in the previous
lecture.

1



For the rest of the lecture, we will try to come up with a CPS semantics for the language uF that we
have seen before.

Recall the domain for values in our semantics for uF :

V alue = U + Z + Pair + Function+ T

While all other values have the same meaning, we will now model functions as having two arguments.The
first argument will be the return continuation, that is, the continuation where the value the function body
evaluates to will be passed. The second argument is the actual argument the function uses in evaluating its
body. So the domain equation for functions is

Function = V alue→ Cont→ Answer

We will first write the CPS semantics for uF using Call-by-Value style of parameter passing. We will
then show how to tranform these semantics to the Call-by-Name case. Finally we will look at how to extend
these semantics to describe uF !

CPS Semantics for Call-by-Value uF

First we write the two easy rules for the cases where e is an integer n or a variable x. When e is an integer,
the meaning function simply passes it to the continuation K that it is supplied with. When e is a variable
x, the meaning function first reduces x to a value by looking up the environment ρ that it is supplied with
and then passing the value to the continuation K that it is supplied with. The equations pertaining to these
two cases are given by :

C[[n]]ρK = K�n�
C[[x]]ρK = K�ρx�

When e is of the form if e0 e1 e2, then we first evaluate e0 in the environment ρ and then pass it to a
new continuation which evaluates e1 if e0 evaluates to true and e2 if e0 evaluates to false. However, we also
need to check for errors in the evaluation of e0 and the meaningful case becomes pretty obscure with the
inclusion of various error cases as shown below :

C[[if e0 e1 e2]]ρK = C[[e0]]ρ(λr.case r of

⊥ . K0⊥
value(t) . if t then C[[e1]]ρK else C[[e2]]ρK
value(u) . K0 error

value(n) . K0 error

value(f) . K0 error

value(p) . K0 error)

This is tedious. We can encapsulate the above as

C[[if e0 e1 e2]]ρK = C[[e0]]ρ(check bool(λ b.if b then
C[[e1]]ρK else

C[[e2]]ρK))

2



Here check bool is a function which takes a continuation K that only accepts Boolean values and returns a
continuation. The returned continuation if applied to a Boolean value simply passes the Boolean value to K
and otherwise terminates the program by passing the value(non-Boolean) to the Halting Continuation K0.
The definition for check bool is as follows:

check bool(K) = λr.case r of

⊥ . K0⊥
V alue(π(b)) . Kb

... . K0 error

where
K ∈ Bool → Answer

We can similarly define other functions like check value, check pair, etc. as necessary. Many of these will
be used in the rest of this lecture.

When the expression is a pair of the form 〈e1, e2〉, we first evaluate e1, then we need to check that it
evaluates to a value using a check value filter and pass it to a continuation which similarly evaluates and
checks e2. The values obtained for e1 and e2 are then passed as a pair 〈v1, v2〉 to the original continuation
K.

C[[〈e1, e2〉]]ρK = C[[e1]]ρ(check value(λv1.C[[e2]]ρ(check value(λv2.K〈v1, v2〉))))

The rule for binary arithmetic expressions of the form e1 ⊕ e2 can similarly be written as

C[[e1 ⊕ e2]]ρK = C[[e1]]ρ(check value(λv1.C[[e2]]ρ(check value(λv2.K(v1 ⊕E v2))))

The rule for expressions of the form first e be written as:

C[[first e]]ρK = C[[e]]ρ(check pair(λp.K(π1p)))

Here we need to use the check pair function and the π operator for extracting elements from a tuple.

The rule for function expressions of the form fn;x; e is :

C[[fn x e]]ρK = K(λvK ′.C[[e]]ρ[x 
→ v]K ′)

As function is a value in our domain, the continuation K is simply applied to the value the function evaluates
to. Recall that function is a value which takes two arguments, a parameter v and a return continuation K ′.
So the function evaluates to a λ-expression taking v and K ′ as arguments and having a body which evaluates
the function body in an environment with x having the value of the parameter v and sends it to the return
continuation K ′.

The rule for function application is:

C[[e1 e2]]ρK = C[[e1]]ρ(check fun(λf.C[[e2]]ρ(check value(λv.fvk))))

We first evaluate e1 and pass it through a check fun filter to ensure that it is a function f . This function
is then passed to a continuation in which we evaluate e2 and pass it through a checkval filter to ensure that
it is a value v. The values f and v are finally passes through a continuation in which the value obtained by

3



applying f to v is passes to the original continuation K.

The rec expression semantics can be written as shown below. It is similar to the semantics for the
function expression fn x e. However, we need to take the fixed point to express the recursion.

C[[rec y (fn x e)]]ρK = K(fixλf.λv K ′.C[[e]]ρ[x 
→ v1, y 
→ f ]K ′)

4


